

Public deliverable

© Copyright Beneficiaries of the MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.1 Page 1 of 24

MIKELANGELO

D2.1

First Cancellous bone simulation Use Case

Implementation strategy

Workpackage: 2 Use Case & Architecture Analysis

Author(s): Uwe Schilling HLRS

 Nico Struckmann HLRS

 Michael Gienger HLRS

Reviewer Matej Andrejašič Pipistrel

Reviewer Nadav Har'El Cloudius

Dissemination

Level
Public

Date Author Comments Version Status
2015-08-07 Uwe First notes / Initial draft V0.0 Draft
2015-08-13 Nico / Uwe Enhancements and refinements V0.1 Draft
2015-08-14 Uwe / Michael Document ready for review V0.2 Review
2015-08-31 Uwe / Michael Document ready for submission V1.0 Final

Public deliverable

© Copyright Beneficiaries of the MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.1 Page 2 of 24

Executive Summary

This is the first of three deliverables regarding cancellous bone simulation. Each deliverable

will contain the progress done and will describe the next steps. The cancellous bone

simulation is one of the use cases of MIKELANGELO and is part of the work package 2. This

document describes the bones software and tries to give some insight how this software works

and what it needs to run. It explains limitation that are given at this point in time and explain

how the MIKELANGELO project can improve the current work-flow in HPC centers.

Furthermore, an implementation plan is outlined as well as an evaluation plan to document

the progress and compare the results.

Public deliverable

© Copyright Beneficiaries of the MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.1 Page 3 of 24

Table of Contents

1 Introduction .. 6

2 Main Deliverable Content .. 7

2.1 Use Case Description... 7

2.2 Current Limitations.. 8

2.2.1 HPC .. 8

2.2.2 Cloud .. 9

2.3 Expectations for the MIKELANGELO Stack ... 9

3 Use Case Set-up ... 11

3.1 Physical Hardware ... 11

3.2 Software ... 12

3.3 Execution ... 13

3.3.1 Application Execution .. 13

3.3.2 Research and Business Focus ... 13

3.4 Data .. 15

3.5 Security .. 15

3.6 Mandatory Requirements .. 15

3.7 KPI ... 17

3.8 Initial Measurements ... 19

4 Implementation Plan .. 20

5 Evaluation and Validation Plan .. 21

6 Key Takeaways .. 22

7 Concluding Remarks .. 23

8 References and Applicable Documents .. 24

Public deliverable

© Copyright Beneficiaries of the MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.1 Page 4 of 24

Table of Figures

Figure 1: Data workflow of the cancellous bone application ... 7

Figure 2: Testing environment set up ... 11

file://///psf/Home/Google%20Drive/0-xlab/Mikelangelo%20(2)/MIKELANGELO/SHARED_WORKSPACE/OfficialDocuments/Deliverables/Final/D2.1/MIKELANGELO-WP2.1-USTUTT-DE_v1.0.docx%23_Toc428825108

Public deliverable

© Copyright Beneficiaries of the MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.1 Page 5 of 24

Glossary

CPU - Central Processing Unit

CT - Computer Tomography

FE - Finite Element

GB - Gigabyte

GB/s - Gigabyte per second

Gb - Gigabit

Gb-Lan - Gigabit-Ethernet

Gb/s - Gigabit per second

HPC - High performance Computing

I/O - Input / Output

InfiniBand - computer-networking communications standard

KPI - Key Performance Indicator

KVM - Kernel-based Virtual Machine

LTS - Long Term Support

LTS - Long Term Support

MB - mega byte

MPI - Message Passing Interface

MRI - Magnetic Resonance Imaging system

NFS - Network File System

OS - Operating System

OSv - The new develop Operating System

OpenMP - Opem Multi-Processing

Qemu - Quick Emulator

RAM - Random Access Memory

RDMA - Remote Direct Memory Access

RVE - Representative Volume Element

Req # - Requirement number

RoCE - RDMA over Converged Ethernet

sKVM - extended hypervisor

VM - Virtual Machine

Xen - hypervisor which uses a micro-kernel design

Public deliverable

© Copyright Beneficiaries of the MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.1 Page 6 of 24

1 Introduction

This is the first of three deliverable’s regarding Cancellous bone simulation. Each deliverable

will contain the progress done and will describe the next steps. The Cancellous bone

simulation is one of the use cases of MIKELANGELO1 and is part of work package 2 (Use

Case & Architecture Analysis). It is a high performance application software that is developed

for HPC centers like the High Performance Computing Center Stuttgart (HLRS) and can run

on several thousands of compute nodes and scales accordingly. It calculates the density of the

cancellous bone (also known as trabecular or spongy bones) to develop more accurate and

longer lasting implants to replace damaged human body parts.

The development process of such a highly optimized HPC application software is one of the

current challenges to be focused on by the MIKELANGELO project. New efficient software

for supercomputers and HPC clusters are challenging to develop and demand deep insight

knowledge of the software and hardware used in high performance computing (HPC) centers.

The MIKELANGELO project addresses this problem with the help of abstraction layers to

simplify HPC application development, by designing a new hypervisor and a lightweight

guest operating system. Also, it tries to optimize the work-flow of HPC centers for the

provisioning of new applications, especially if they have conflicting requirements regarding

the current set up (e.g. particular kernel version is required) and try to simplify the

deployment of such software. To improve this new software stack it is necessary to measure

imported parts (node communication / I/O) of the software stack. The key performance

indicators (KPI) that we like to measure are performance oriented, due to our businesses

model. These KPIs are guiding the implementation of the new software development within

MIKELANGELO. HLRS provides a hardware test platform which is configured with similar

hardware and software used in a production system to show the integration steps necessary to

implement the MIKELANGELO software stack into a HPC center.

1 http://www.mikelangelo-project.eu/

Public deliverable

© Copyright Beneficiaries of the MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.1 Page 7 of 24

2 Main Deliverable Content

Biomechanical research relies increasingly on simulations to develop more accurate and

longer lasting implants to replace damaged human body parts. The positioning and geometry

of these implants can be vastly improved by knowledge of the bone density which can be

precisely calculated with the help of HLRS’ cancellous bone software.

Typically, Computer Tomography (CT) and Magnetic Resonance Imaging (MRI) are

techniques to gather data for such a medical analysis. However, in the case of the bone

structure, with various density, this information can be refined further with precise computer

simulations of the bone’s structure. To simulate the micro-structure of a cancellous bone (also

known as trabecular or spongy bones) there are several steps necessary. The general micro-

structures are approximately 0.1mm in diameter, only, but to be able to distinguish these

structures precisely, an additional processing step is required to achieve a refinement of the

resolution down to 0.02mm.

2.1 Use Case Description

The cancellous bone simulation is an I/O intensive application. To calculate the structure of

the bone it has to split up the data set into smaller pieces. The division of the whole data set

(derived from CT / MRI scan) into tiny cubes, which can be processed by the workers, is

handled by the master process. These data sets are stored by the master process in a queue

from which the workers fetch their input for the calculation of a bone's structure.

Depending on the actual structure of a data-set, which represents a tiny cube (which is called

RVE, Representative Volume Element) of the whole bone structure, the calculation time

strongly differs. This time cannot be assessed reliably in advance.

Figure 1: Data workflow of the cancellous bone application

Public deliverable

© Copyright Beneficiaries of the MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.1 Page 8 of 24

Therefore, the data set is called asynchronous, since it is not possible to split and distribute all

cubes to all calculation processes beforehand evenly regarding their execution time. It has to

be done while the application is running. The worker will fetch the next part of the calculation

after it has finished its prior work. The master will provide the parts and orchestrates the work

flow. To calculate the structure of a bone sample, 27 Finite Element (FE) calculations are

necessity. This data is stored as intermediate result during the calculation.

To keep all workers under load it is necessary to serve them data sets with low latency and

high throughput (see 3.8 Initial Measurements), since the waiting time of the worker for

retrieval of the next data set cannot be used otherwise. If there are parts of the cube with less

calculation time it is possible that workers fetch data sets in tiny intervals. Pre-fetching data

would help to save maybe milliseconds of overall calculation time, however, this is a lot of

work and based on guesses which might be completely wrong - the most efficient approach is

the master-worker scenario. Thus, a low latency is beneficial as well as a high throughput is if

there are many workers fetching data in parallel.

2.2 Current Limitations

Due to optimised compilers for different architectures (e.g. Cray Compiler, Intel Compiler,

Gnu Compiler) the simulation software requires a rebuild on different hardware architectures.

It needs to be slightly modified each time to match paths for libraries or particular versions of

a library. This slows down the development and build process of this kind of HPC software

massively, if is intended to run on any other hardware than the development environment

consists of. Furthermore, it is not possible for users to install particular kernel on the cluster

hardware, so they have to use the installed software if there is a hard restriction on a specific

library version they have no possibility to run the software.

As the Bones application is clearly a high performance application, the overall setup of the

software stack is complicated and requires various standard packages as well as self-compiled

extensions and libraries. Thus, a clear benefit for the overall bones setup phase would be the

ability to install required software components automatically by defining the packages and

archives including their particular versions. As the current process foresees human interaction

and manual configuration, an automated mechanism to provide the execution environment

would ease the whole execution process. Alternatively, a complete software stack could be

offered directly based on pre-configured images ready to be run.

2.2.1 HPC

In the field of high performance computing, the biggest problem is scalability, beside this

there are obviously no clear limitations in the sense of performance. The application scales

very well and has already been used in huge-scale dimensions, in particular with 32.000 cores

on the HLRS’ Cray supercomputer Hermit2.

However, the HPC clusters are highly specialized and thus, clearly lack on service

provisioning and flexibility. At first, a signed contract between the HPC centre and the user is

2 https://www.hlrs.de/systems/platforms/retiredsystems/crayxe6hermit/

Public deliverable

© Copyright Beneficiaries of the MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.1 Page 9 of 24

necessary before getting access to any system. Most parts of the system are not user friendly.

To prevent performance bottlenecks users have to live with some inconveniences, e.g.

graphical user interfaces are avoided. Hence, access to the systems is only granted via remote

shell and highly secure connections using the standard protocols and certificates (X509,

GSSAPI, etc). Furthermore, due to the specialization, special requirements and parameters

have to be fit in order to achieve high performance. When executing the applications: for

instance, compiler options and flags to tune the application in the best way have to be known

and set afterwards.

2.2.2 Cloud

In cloud systems, the statements above are basically contrary: the service and usage itself are

well defined and easy to access, but the performance is far from specialized high performance

computers. In clouds, I/O is designed for providing a standard user service, for example a

multi-tier web application. The requirements for very low latencies and high bandwidth are

mostly not met and thus, represent a major bottleneck when executing high performance

applications. In addition, this also counts for the network interconnects. In HPC, mostly

InfiniBand and proprietary solutions are used, which provide ultra-low latencies, high

throughput and remote direct memory access (RDMA) that speeds up processing and

communication amongst workers remarkably. Another issue caused by the fact, that the

virtual instances have to be started before the actual application can be executed. This amount

of instantiation time is significant for a huge amount of instances. Finally, the overhead for

full virtualization with Xen3 or KVM4 eliminates the advantage of cloud computing for high

performance applications.

These disadvantages also apply for the introduced high performance application use case

Cancellous Bones simulation. It requires a very fast storage back-end and interconnects

capable of RDMA and high bandwidths with low latencies between the nodes that traditional

clouds cannot provide. Even if there would be the possibility to have for example InfiniBand,

there is still the huge overhead of the operating system that slows down the applications and

in parallel, increases the execution costs.

2.3 Expectations for the MIKELANGELO Stack

MIKELANGELO focuses on the simplification of HPC software development and HPC

application execution. This will be achieved by simple work flows. E.g. the user can fetch a

standard VM from our stack, build his software in a pre-defined environment without having

access to HPC hardware (i.e. on a desktop computer) and then push the prepared VM

including his developed software to any cluster offering hypervisor(s) for the execution of

virtual machine images and define how it should run.

Currently, developers have to learn in great detail on the individual setups of the system, to

adapt their software and to achieve maximum performance. This includes the overall structure

3 http://www.xenproject.org/
4 http://www.linuxkvm.org/page/Main_Page

Public deliverable

© Copyright Beneficiaries of the MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.1 Page 10 of 24

of the system and available software components. They have to modify the software in order

to run in a particular HPC environment.

An improved start-up time would be beneficial for the workload of the whole compute

environment. To get closer to a bare metal HPC execution, it is essential to reduce any kind of

overhead to an absolute required minimum. This does not only affect booting times, but also

the latencies and bandwidths for all kinds of executions.

Especially the performance for I/O and network is a crucial requirement at the current point of

time as this limits current cloud computing performance. Thus, MIKELANGELO is expected

to improve this circumstance significantly. As the Bones application, besides all other pure

High performance applications requires a shared storage for all nodes to store intermediate as

well as final results, the performance of this component needs to be optimized in terms

performance.

The following bullet points summarize our expectations regarding achievements of the

MIKELANGELO project:

 Improved start-up time for virtual resources

 Support standard HPC hardware (x86 CPU architecture), like storage systems and

interconnects

 Support HPC software mechanisms and protocols, like RDMA or RoCE as well as

super down-striped operating system

 Minimise the performance overhead of full virtualization

 Enable easy orchestration and management by automation and contextualization

Public deliverable

© Copyright Beneficiaries of the MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.1 Page 11 of 24

3 Use Case Set-up

The Bones Use Case is a good example of an HPC application. It has the same restrictions

(IO-bound) as many other HPC software and provides solid and reliable results. The main

intention of this use case is to measure how much performance is lost due to the virtualization

- at this point, with the latest versions of KVM and a standard Linux based OS. The expected

drops are in the plain run time, due to the start-up time of the virtual machine and in the

network latency and the IO. This performance decrease is expected, each layer of software

will add an overhead and decrease the performance.

To validate the improvements resulting from developments within the MIKELANGELO

project, KVM will be swapped to the newly developed sKVM and the standard Linux based

guest OS will be replaced by the lightweight single user cloud operating system OSv5. In each

step the use case will run on the same hardware (see 3.1 Physical Hardware) to get

comparable results. We will run each test multiple times to minimize measurement errors.

The expectation for MIKELANGELO is, that with each step forward of the MIKELANGELO

project, the performance will be increased and the overhead for virtualization decreased down

to a point where it is feasible for deployment in HPC production environments.

3.1 Physical Hardware

The focus of our hardware setup is to be as close as possible to HLRS’ production

environment. The Blade-center dedicated to the MIKELANGELO project is inter-connected

via Gigabit Ethernet as well as InfiniBand. The InfiniBand is a network interface which

provides a low latency network with and a 1.2 μs MPI ping6 time combined with high

bandwidth of 10Gb/s and is capable of RDMA.

5 http://osv.io/
6 http://www.mellanox.com/page/products_dyn?product_family=4

Figure 2: Testing environment set up

Public deliverable

© Copyright Beneficiaries of the MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.1 Page 12 of 24

The user $HOME directories are shared across all nodes (NFS) offering a shared and fast

network based file-system for the data exchange during calculation and intermediate results.

The NFS storage is hosted on a dedicated server. Project partners can access it through a

publicly available front-end where they are able to submit batch-jobs with the help of the

resource manager Torque.

The Blade-center consists of 14 nodes with 32GB RAM and 8 cores each. This adds up to a

total of 112 cores and 448GB RAM. The dedicated front-end node offers 4 Cores and 16GB

RAM.

3.2 Software

All 14 nodes have the same operating system installed and software packages are also the

same on all nodes. The exception is one node which provides a network manager for the

InfiniBand network, on this node are additional packages installed for software building and

administrative work. The cancellous bone application should run on all 14 nodes with all 112

cores at the same time. It will use the InfiniBand interconnect to communicate between

compute nodes and will read from and write to a shared file system storage (NFS7).

The cancellous bone application is dependent on the following libraries:

 libcr-dev, a library to checkpoint/Restart programs. Allows programs to be check

pointed, stopped and later restarted

 mpich2, high performance implementation of MPI (Message Passing Interface)

 gfortran, implementation of the GNU Fortran compiler for gcc

 libmetis-dev, libmetis5, math library for fill-reducing matrix ordering and serial graph

partitioning

 fmps framework for finite elements

 gcc, the GNU Compiler Collection

 petsc8, a suite of data structures and routines for the scalable (parallel) solution of

scientific applications modeled by partial differential equations.

7

 http://nfs.sourceforge.net/
8 http://www.mcs.anl.gov/petsc/

Public deliverable

© Copyright Beneficiaries of the MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.1 Page 13 of 24

3.3 Execution

In the following subsections, the execution of the Bones application will be highlighted.

Therefore, two sections have been chosen to discuss the application execution as well as its

research and business focus.

3.3.1 Application Execution

The cancellous bone application has three phases in its life cycle. The first phase will split up

the whole data set in smaller domains (tiny cubes). This part is very fast due to the data

format PureDat described in detail in the subsequent section (see Section 3.4 Data).

The second phase is the compute intensive part. At this point a master process keeps track

over the calculated domains, the worker collects the domain information and fetches the

domain’s specific data set from the shared storage (NFS) and starts the calculation. The

calculation time depends strongly on the domain size and the actual bones structure within a

domain. Cancellous bone have denser and less dense parts. Denser parts are compute

intensive and need longer calculation time. In contrast, hollow parts can be calculated nearly

instantaneously. The results are written to the NFS and will be combined in phase three. Each

time a worker has finished its calculation it fetches the next part form the data queue (MPI9

communication). Hence, each worker should spend the most time for calculation. This

strongly depends on the speed of data delivery towards the worker.

The third phase is the combination of the calculated subdomain data into a global picture.

This is a complex part from the mathematical point of view, but the calculations are fast in

comparison to the overall run time.

Execution time (on standard laptop for a single RVE):

 ~ 5 minutes (small development test)

 ~ 45 minutes (bigger test)

 ~ 24 Hours (data set with high resolution)

3.3.2 Research and Business Focus

In contrast to the subsection above, this section details the research and business focus of the

use case. As already detailed, the Bones application has been already executed on state of the

art supercomputers with a huge amount of computing cores. However, this mechanism is not

very practical for the foreseen end users due to the limitations of HPC. For this purpose,

distributed executions have been foreseen in order to enable efficient and in-time processing.

This business case directly bundled to the Bones application are hospitals and bone implant

producers that need to improve the quality of service for patients, their direct customers. So

far, only a few different sizes of implants for hips, for instance are available. In conclusion,

this leads to a huge discrepancy for people who don’t fit those standardized sizes. To

9 http://www.mcs.anl.gov/research/projects/mpi/

Public deliverable

© Copyright Beneficiaries of the MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.1 Page 14 of 24

accomplish this ambitious goal, we foresee the usage of all available personal computers and

laptops to process during their idle times the required calculations. Using a process like this,

the time between diagnosis using modern computer tomography, the selection of the best

suitable implant and its production can be significantly improved. As the implants are

produced on the basis of the patient data, a significant extension of the usage from currently

approximately 10 years is expected. In addition to this, the sickness absence rate will be

drastically reduced based on the optimized implants, as well fitting implants will improve and

shorten rehabilitation.

In order to achieve the business goals by enabling a distributed and scalable service, there are

different technical issues that have to be resolved. On the one hand, a distributed version of

the application needs to be created. On the other, its execution parameters and performance

have to be understood in detail. At this point, research is still required.

Within MIKELANGELO, the application will be executed in a distributed manner. The

simulation results of the application are not of importance, it is rather important to understand

its execution parameters in detail.

For instance, what are the concrete differences between the following two examples:

1. Co-location of virtual instances

In cloud environments, resources are always shared by the co-located virtual machines. This

use case will examine the parameters for this co-location. Is it beneficial for the execution that

VMs are located at the same physical host so that RDMA protocols work highly efficient? Or

does resource sharing of networks prohibit high performance? Those questions will be

resolved within the Bones use case.

2. Virtual instance size

The size of virtual machines is a critical factor for the application as well. So far the

implications between core sizes of virtual instances and their memory are unclear. In other

words, are there parts within the application that run efficient with a small amount of cores or

memory, which would translate to a notebook within a hospital or are bigger VMs with higher

performance required? As above, questions like these are of high interest and need to be

clarified.

As can be seen, although the business aspect is targeted, research is still very important for the

Bones use case. Therefore, various kinds of executions with different parameters for CPU,

memory, network and physical co-location will be used in order to evaluate the distributed

performance of the use case.

Public deliverable

© Copyright Beneficiaries of the MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.1 Page 15 of 24

3.4 Data

The file format for the bones application is called PureDat. The fundamental idea behind

PureDat was to develop a file format which separates the data types in memory to minimize

the necessary system and library calls. PureDat is used as input file format as well as output.

The data set is split into 4 files with a total size of about 19 GB for a medium sized set

(maximum data set is ~40 GB). One of the files is the main data set and contains most of the

data used. The data for the calculation will be provided via a NFS (Network File System)

which is mounted on every compute node as well as the frontend. This NFS-Server is an

independent machine and is only used as storage server. The nodes itself will communicate

over MPI or the filesystem, to collect the data for calculation from the NFS. The master

process will mark the domains and send the information (where they located) to the worker.

The worker collected then the data from the NFS server. As mentioned in the previous parts

of this document, the main problem for HPC application is to get the data as fast as possible

to all nodes and provide a fast storage to perform at the maximum capability's of each node.

Nodes without data can not calculate. To minimise the latency and maximise the network

throughput, the communication (MPI) runs over InfiniBand and data transfer is handled by

Gb-Lan.

3.5 Security

The sample data set for testing as well as for the performance measurement are trouble-free

regarding security and data privacy. Real data sets however are very critical regarding data

privacy and need therefore to be protected strongly against any kind of data leakage.

3.6 Mandatory Requirements

Almost all simulations depend on some sort of shared workspace. This is uses to load and

save intermediate data accessible for all nodes while the application is running. For high

performance applications it is necessary that this storage is as fast as possible. While most

nodes make use of their local storage as temporary cache, only. The standard for applications

to communicate in a HPC environment is MPI and OpenMP10. This is also needed for the

cancellous bone simulation.

Following requirements (see D2.19 The first MIKELANGELO architecture for a full list)

have been identified for the cancellous bone application:

 Req #038: Bones app must be running in OSv and sKVM

In order to execute the code within the OSv operating system, various changes for the Bones

application have to be targeted. Especially all the components need to be compiled as shared

objects, which will impose a complete restructuring of the application.

 Req #104: Integrate NFS Client in Osv

10

 http://openmp.org/wp/

Public deliverable

© Copyright Beneficiaries of the MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.1 Page 16 of 24

For the execution of the use case, a shared workspace is mandatory, as detailed above. HPC

environments use Lustre file systems for this purpose, for Clouds a network file system will

be enough. For initial executions, the NFS client will be required as the server will be hosted

on a dedicated physical machine. However, the final executions foresee a full cloudified

solution, including a NFS server.

 Req #105: NFS Server should be available in OSv images

As detailed above, the final executions foresee a full virtualization of the Bones software

stack. Thus, a NFS server is required as well. However, the application runs without a

dedicated server, so this requirement can be marked “optional”.

 Req #077: support for InfiniBand core driver

In order to speed up MPI communication in terms of latency and bandwidth, InfiniBand

network support is recommended for this application. Therefore, the hypervisor as well as the

operating system need to support this kind of interface.

 Req #027: OSv support for message passing (MPI)

The Bones application uses the message passing interface for the communication mechanisms

between the processes and threads. This library has to be ported to OSv in order to guarantee

efficient inter process communication.

 Req #025: OSv support for InfiniBand hardware (virtual interfaces)

This requirement is tightly coupled with req #077. In order to establish the InfiniBand

connection, both requirements have to be fulfilled.

 Req #030: OSv support for RDMA (core driver of InfiniBand)

RDMA (Remote Direct Memory Access) is part of the InfiniBand functionality and

increases the cross CPU socket/ cross node communication drastically. RDMA is one

of the core principles for high performance computing. Therefore, in order to enable

high performance clouds, this mechanism needs to be available as well. The Bones

application will make use of this kind of functionality using InfiniBand and MPI.

 Req #042: Capture performance metrics of guest OS – Osv

To understand the performance of the operating system and with this, the application in detail,

it needs to be possible to capture monitoring information dedicated to the application

execution.

 Req #041: Capture performance metrics of host Hypervisor – sKVM

In order to compare the results of bare metal and virtual executions, the performance

difference has to be assessed. This performance metrics define the entire result of

MIKELANGELO and therefore, great attention has to be put on those.

 Req #10: Hypervisor support for Ubuntu guest

Public deliverable

© Copyright Beneficiaries of the MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.1 Page 17 of 24

For the comparison of different guest operating system, at least one other OS needs to be

supported by the hypervisor.

Besides the aforementioned requirements, there are other various related requirements,

especially for the network and protocol integration that need to be achieved in order to enable

the core functionality of the Bones application. All related requirements can be observed in

D2.19 - The first MIKELANGELO architecture.

3.7 KPI

The business model of HPC-Centers is to provide as much performance as possible. Software

developers and application users have to accept several limitations to get the best performance

out of their code. Therefore, the key performance indicators (KPIs) of this use case are

capturing different aspects relevant for the overall performance of the application.

Briefly summarized, we are regarding these metrics:

 plain run time

 metrics from the application

◦ time to load data (bandwidth and latency / random read and write)

◦ time for calculation (computing efficiency)

◦ time to store data (sequential read and write)

 Overhead measurements

◦ metrics from OSv / basic VM operating system

▪ w/r data

▪ network communication

◦ metrics from kvm/skvm

▪ w/r data

▪ network communication

Public deliverable

© Copyright Beneficiaries of the MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.1 Page 18 of 24

KPIs from Grant Agreement:

[KPI2.1] relative efficiency of virtualized I/O between KVM and sKVM (developed in the

project)

To measure the improvements we will collect data from of the application itself. Most of the

HPC application measure several things during execution and collects monitoring log file.

The interesting things here are the time the application need to load the data (bandwidth and

latency combined). As described in the previous sections this is the most essential aspect

regarding the use case’s performance (see 3.3 Execution). How many data junks that are load

and stored while the application is running, is more exactly explained in 3.8 Initial

Measurements.

[KPI3.1] The relative improvement of efficiency of MIKELANGELO OSv over the

traditional guest OS.

We will also gather information from application, therefore we will compare an Ubuntu VM

with the new develop OSv. Start up time is only one factor which will be improved. To

increase the efficiency I/O and calculation overhead are other characteristics which are

important. To measure these it will be necessary to compare this two approaches similarly. As

described in 3. Use Case Set-up we will measure different combination of hypervisors and

VM to cover all possible configurations. Regarding the efficiency improvements we are

interested in the star up time as well as I/O throughput and CPU calculation time. The last of

these three metrics is also part of the hypervisors and will be examined by the cross-level-

optimization as well. In detail, the pass-through form VM workers to the hypervisor to bare

metal (physical memory and CPU) works. [KPI3.1, KPI3.3].

[KPI3.2] The relative improvement of efficiency [size, speed of execution] between the

Baseline Guest OS vs. the MIKELANGELO OSv.

One of these KPIs is the plain run time of a simulation. This includes the VM start-up time,

the actual runtime of the application itself and the shutdown of the VM. The overhead of the

VM needs to be as low as possible. The faster the VM is ready and shut down after the run the

more jobs can run in total. In addition, disc space should be as low as possible to have the

most of space for calculation data. Reliable, secure and fast storage is an expense factor and

will rise when try to scale up data systems for high performance computing. The size

measurement is fairly simple. We compare the actual disc size of the different operating

system images (OSv and Ubuntu). For the executing part of this KPI we compare the

computing part separately as well. To see how well the different VM will communicate with

the underlying hypervisor and the CPU.

[KPI3.3] The relative improvement of compatibility between baseline and MIKELANGELO

versions of OSv.

Due to the integration of our use case we will show that OSv is compatible with a state of the

art Simulation software and is capable of execute this software accurate. Built in the

Cancellous bone application are measurements which indicate the outcome of the simulation

Public deliverable

© Copyright Beneficiaries of the MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.1 Page 19 of 24

and if the calculation are correct. Therefor we can prove that OSv is suitable for HPC

applications and will be a powerful alternative to traditional virtualized operating systems.

With the help of these KPIs we are able to compare the application performance and identify

bottlenecks affecting a virtualized execution, which needs to be focused on during the project.

The last part of the KPI are built around the data pass-through between the software layers.

We would like to measure in (s)KVM as well as in OSv how the data generated by the

software flows through the several layers. To achieve this we will use monitoring hooks that

are built in (s)KVM for network communication as well as read / write performance. This two

indicators will be measured in OSv and at the basic VM operating system.

In the end we will have a nearly complete data flow measurement and computation

performance thou the different software layers and have comparable results over the different

intermediate steps within the MIKELANGELO project. In addition, we can compare the

overhead regarding size and overall performance.

3.8 Initial Measurements

The following measurements are taken from execution runs on the HLRS Cray-XE6-System

[4]. The granularity of configuration determines how precise the results of the calculation are.

If the data set is split into cubes with 0.6 mm pieces, there are 169.344 Representative

Volume Element (RVE) for the calculation process. If the initial implementation is used each

RVE has a calculation time up to 40 min which leads to an overall calculation time of roughly

8 years on one single core. To speed up the process, a parallelization is mandatory. Different

approaches of parallelization had been tested during the development process of this

application.

One approach is to synchronize the master and workers over the file system. This approach

can scale-up to ~900 nodes (~ 30.000 cores) and will stop scaling in this range of cores. But it

is possible to calculate 20.000 RVE in under 12 hours and the whole data set in about 4.25

days. Another approach uses MPI for synchronization and can scale-up even further.

 Serial calculation of one RVE:

Process Calculation time [sec]

geometry extraction and model setup ~ 10

FE-Simulation ~ 1480

Calculation of material properties ~ 10

The mean data throughput of one RVE is ~ 0.054 MB/s. This value is derived from a

generated data set of approximately 41 MB. During the execution 40 MB of data has to be

read for one RVE, this is then divided by the calculation time of about 25 minutes and the 27

FE-Simulations processed.

The problem at this point is, one node of the XE6 has 32 cores. Therefore, 3200 nodes

generate a constant read and write of 40 MB junks with a total bandwidth of ~5.5GB/s.

Public deliverable

© Copyright Beneficiaries of the MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.1 Page 20 of 24

4 Implementation Plan

HLRS set up a small cluster with 14 nodes. The software that we are using in our production

environment to schedule batch jobs is Moab in combination with the resource manager

Torque11. Torque is open source and offers simple scheduling functionality sufficient for our

testing environment while Moab is a sophisticated scheduler requiring a commercial license.

The main goal is to be as close to the real HPC production environment as possible. Our

integration plan is divided into the set-up and configuration of the test cluster environment

and subsequent to this, the execution of the bones simulation to verify that the functionality of

the test-bed is as intended. Followed by an execution in virtual machines which is then

compared to the bare metal execution to identify performance issues and bottlenecks to be

focused on in the hypervisor's development.

We will then try to build the application for OSv and start the validation with a single node at

first. To progress further we will then set up the test environment to run multiple OSv

instances in parallel and measure their performance. To achieve this we will integrate the

hypervisors KVM and sKVM in our environment.

Finally, we will execute the whole use case in the distributed and virtualized environment. At

this point, focusing of different execution parameters will be at the forefront. This means, that

various executions with varying parameters will be necessary. Those runs will be analyzed

and understood in detail. Furthermore, in particular a huge amount of executions will be

necessary in order to relativise the possible measurement error. For this reason, only smaller

data sets, which have not been defined so far will be used.

11 http://www.adaptivecomputing.com/products/opensource/torque/

Public deliverable

© Copyright Beneficiaries of the MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.1 Page 21 of 24

5 Evaluation and Validation Plan

To get a virtualized baseline we will measure the cancellous bone application with KVM,

Qemu and a basic operating system like Ubuntu 14.04 (LTS)12. To analyze the performance

of OSv we will use this setup and swap Ubuntu with OSv so we will get a baseline for OSv.

To get a baseline measurement of the new sKVM we will swap KVM and Qemu and measure

with Ubuntu as well as OSv again. Each measurement will run several times and will be

documented to minimise measurement errors. In the end we will end with a baseline, a

performance information for OSv and sKVM separated, as well as a combined performance

information’s.

12 http://www.ubuntu.com/server

Public deliverable

© Copyright Beneficiaries of the MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.1 Page 22 of 24

6 Key Takeaways

As you have seen the Cancellous bone simulation is a complex HPC software, which is one of

the use cases of the MIKELANGELO project. We will show how the newly developed

sKVM and OSv can be beneficial for HPC centers. We selected a performance oriented

measurement pool and aim to evaluate how MIKELANGELO can help to improve the user’s

workflow within a HPC center as well as the development workflow for new HPC software.

Public deliverable

© Copyright Beneficiaries of the MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.1 Page 23 of 24

7 Concluding Remarks

As the project proceeds and the integration workpackage starts and makes progress, this use

case will also proceed. For the initial and final measurements the test hardware is necessary to

have consistent and comparable results. We will measure the elaborated KPIs and have more

in-depth knowledge when we are able to evaluate the first results.

Public deliverable

© Copyright Beneficiaries of the MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.1 Page 24 of 24

8 References and Applicable Documents

[1] The MIKELANGELO project, http://www.mikelangelo-project.eu/

[2] HLRS XE6Hermit,

https://www.hlrs.de/systems/platforms/retiredsystems/crayxe6hermit/

[3] Xen Project Homepage, http://www.xenproject.org/

[4] KVM Project Homepage, http://www.linuxkvm.org/page/Main_Page

[5] OSv Project Homepage, http://osv.io/

[6] Mellanox ConnectX overview, www.mellanox.com

[7] NFS Implementation, http://nfs.sourceforge.net/

[8] Petsc Project Homepage, http://www.mcs.anl.gov/petsc/

[9] MPI Project Homepage, http://www.mcs.anl.gov/research/projects/mpi/

[10] OpenMP Project Homepage, http://openmp.org/wp/

[11] Tourque Project Homepage,

http://www.adaptivecomputing.com/products/opensource/torque

[12] Ubuntu LTS Server, http://www.ubuntu.com/server

	1 Introduction
	2 Main Deliverable Content
	2.1 Use Case Description
	2.2 Current Limitations
	2.2.1 HPC
	2.2.2 Cloud

	2.3 Expectations for the MIKELANGELO Stack

	3 Use Case Set-up
	3.1 Physical Hardware
	3.2 Software
	3.3 Execution
	3.3.1 Application Execution
	3.3.2 Research and Business Focus

	3.4 Data
	3.5 Security
	3.6 Mandatory Requirements
	3.7 KPI
	3.8 Initial Measurements

	4 Implementation Plan
	5 Evaluation and Validation Plan
	6 Key Takeaways
	7 Concluding Remarks
	8 References and Applicable Documents

