

Public deliverable

© Copyright Beneficiaries of the MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.10 Page 1 of 39

MIKELANGELO

D2.10

The First Aerodynamic Map Use Case

Implementation Strategy

Workpackage: 2 Use case & Architecture Analysis

Author(s): MatejAndrejašič Pipistrel

 Gregor Berginc XLAB

Reviewer NadavHar'El Cloudius

Reviewer Peter Chronz GWDG

Dissemination

Level
public

Public deliverable

© Copyright Beneficiaries of the MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.10 Page 2 of 39

Date Author Comments Version Status

2015-08-11 Gregor

Berginc/MatejA

ndrejašič

Initial draft V0.0 Draft

2015-08-18 Gregor

Berginc/MatejA

ndrejašič

Enhancements and refinements V0.1 Draft

2015-08-24 Gregor

Berginc/MatejA

ndrejašič

Document ready for review V0.2 Review

2015-08-31 Gregor

Berginc/MatejA

ndrejašič

Document ready for submission V1.0 Final

Public deliverable

© Copyright Beneficiaries of the MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.10 Page 3 of 39

Executive Summary

The purpose of this document is to provide the reader information regarding the first

aerodynamic map use case implementation strategy. It represents the first of three deliverables

regarding this use case. The aerodynamic map use case is one of the four use cases in

MIKELANGELO project, whose vision is to improve responsiveness, agility and security of

the virtual infrastructure through packaged applications, using the lean guest operating system

OSv and I/O-optimised hypervisor sKVM. The use case will carry out experiments to

evaluate and validate the strengths of the Mikelangelo stack.

This report describes the use case, explains the limitations of the state of the art and it

explains how the MIKELANGELO project will improve the use cases’s workflow. The

report comprises the project’s key performance indicators (KPI) and stresses their relevance

to our use case. The document further explains the implementation plan of this use case,

which will mainly focus on improving support inside OSv operating system and integrating it

with a cloud-based management system provided by the MIKELANGELO stack.

OpenFOAM has already been configured and recompiled in a way suitable for running within

OSv as a single process. However, running simulations in parallel is not possible at the

moment inside OSv because the parallelism in OpenFOAM is built on top of MPI exploiting

multiple processes which are not supported in OSv. Running simulations in parallel will be

one of the biggest challenges in this use case.

The report concludes with plans for evaluation and validation. They present the baselines

planned to be used in order to demonstrate work progress and eventually the strengths of the

entire MIKELANGELO stack: optimised I/O, virtualised RDMA-based communication

between workers, flexibility of the guest OS and security.

Public deliverable

© Copyright Beneficiaries of the MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.10 Page 4 of 39

Table of Contents

1 Introduction .. 9

2 Use Case Definition ... 10

2.1 Use Case Description... 10

2.2 Current Limitations.. 13

2.3 Expectations from the MIKELANGELO Stack .. 14

3 Use Case Set-up ... 16

3.1 Physical Hardware ... 16

3.2 Software ... 17

3.2.1 Selection ... 18

3.3 Execution ... 19

3.4 Data .. 20

3.5 Security .. 20

3.6 Mandatory Requirements .. 20

3.7 Key Performance Indicators .. 22

4 Analysis of OpenFOAM Execution Modes ... 26

4.1 Parallel Execution .. 26

4.1.1 Domain Decomposition .. 26

4.1.2 Running in Parallel ... 27

4.1.3 Reconstruction of Partial Results ... 29

4.2 The Orted Daemon .. 29

4.3 Code Analysis .. 29

4.4 Communication Between Workers .. 33

5 Implementation Plan .. 34

6 Evaluation and Validation Plan .. 35

6.1 Initial Baselines ... 35

6.1.1 OSv Compatibility .. 35

6.1.2 Execution Times ... 35

Public deliverable

© Copyright Beneficiaries of the MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.10 Page 5 of 39

7 Conclusions .. 38

8 References and Applicable Documents .. 39

Public deliverable

© Copyright Beneficiaries of the MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.10 Page 6 of 39

Table of Figures

Figure 1: An example of a SC geometry, an airfoil. .. 11

Figure 2: An example of a lift to AoA dependence. .. 11

Figure 3: Complete wing with several propellers in front. .. 12

Figure 4: A single propeller with a corresponding wing section. .. 13

Figure 5: High-level overview of the XLAB infrastructure. .. 16

Public deliverable

© Copyright Beneficiaries of the MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.10 Page 7 of 39

Table of Tables

Table 1: Execution times for three input cases using one worker process. 36

Table 2: Execution times on the same three input cases using two or more MPI processes. .. 36

Table 3: Execution times on three input cases using different number of workers. 37

Public deliverable

© Copyright Beneficiaries of the MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.10 Page 8 of 39

List of Abbreviations

AoA Angle of Attack

CFD Computational Fluid Dynamics

CLI Command Line Interface

FVM Finite Volume Method

HC Heavy OpenFOAM Case

HPC High Performance Computing

IB InfiniBand

KPI Key Performance Indicators

KVM Kernel-based Virtual Machine

MPI Message Passing Interface

ORTE Open Run-Time Environment

RDMA Remote Direct Memory Access

Re Reynolds Number

RoCE RDMA over Converged Ethernet

SC Simple OpenFOAM Case

sKVM Superfast KVM (codename of the MIKELANGELO KVM version)

VCPU Virtual CPU

VM Virtual Machine

Public deliverable

© Copyright Beneficiaries of the MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.10 Page 9 of 39

1 Introduction

The aim of this document is to provide the reader with information regarding the first

aerodynamic map use-case implementation-strategy. It represents the first of three

deliverables regarding the aerodynamic map use case and explains the current state of the use

case, its plans and goals. The next two iterations of this deliverable will report on updates of

the use case, its implementation and its results.

The aerodynamic-map use-case represents one of the four use cases in the MIKELANGELO

project [1], whose vision is to improve responsiveness, agility and security of the virtual

infrastructure through packaged applications, using the lean guest operating system OSv and

I/O-optimised hypervisor sKVM. The use case will carry out experiments to evaluate and

validate the strengths of the Mikelangelo stack. Simple airfoil analysis, which typically takes

minutes to converge, will allow for quick evaluation of the tools developed in the project,

while the study of full 3D configurations will demonstrate the industrial relevance of the

proposed tools.

The use case is presented in detail in Section 2, which includes the use-case description,

current limitations and expectations for the MIKELANGELO stack. Section 3 contains the

planned use case set-up. It explains the physical hardware and the software that is planned to

be used. It also presents the execution workflow, characterizes the input and output data and

describes the security constraints. In addition is lists all mandatory requirements that need to

be implemented in the MIKELANGELO stack in order to achieve the maximum performance

gains. At the end of the Section 3 KPIs are presented with stressed relevancy to the use case.

Section 4 introduces an in-depth analysis of OpenFOAM [2] in the context of this use case,

focusing on the simpleFoam solver. The implementation plan is presented in Section 5 and

the evaluation and validation plan is introduced in Section 6. The implementation plan

explains how OpenFOAM has been configured for OSv and it discusses what else needs to be

done in order to be able to run OpenFOAM simulations in OSv in parallel. The evaluation and

validation plan presents the baselines and explains their focus on different aspects of running

OpenFOAM simulations on top of existing architectures. This will provide the basis for

evaluation of the components of the MIKELANGELO stack. At the end of the document key

concluding remarks are presented in the Section 7.

Public deliverable

© Copyright Beneficiaries of the MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.10 Page 10 of 39

2 Use Case Definition

On one hand the aerodynamics use case plans to use cloud computing in order to run as many

similar OpenFOAM cases simultaneously as possible. On the other hand it plans to run a

single computationally intensive simulation using all available cores in HPC cluster.

The former need arises in an industrial environment when a particular aerodynamic

configuration, such as an aircraft, sailboat or a car needs to be analysed under a set of

conditions, such as varying the angle of attack, sideslip angle and propeller thrust. While the

variation of a single parameter requires only a couple of dozen cases to be run, the number of

cases increases exponentially with the number of simultaneous parameters to be varied. Such

an application is therefore very well suited for cloud computing, as a single case may not be

very demanding (can be run on maximum one node), but the need exists to run a large number

of them on independent virtual machines. It should be stressed here that a “case” or an

“OpenFOAM case” is a term used to represent a single OpenFOAM aerodynamic simulation

of an airflow around a chosen geometry at one set of parameters, whereas a “use case” is used

to address the complete Aerodynamic map use case under the MIKELANGELO project.

On the other hand running a single computationally demanding problem is needed when a set

of parameters is already chosen but a physically or numerically more precise simulation is

required. An example of such a simulation is airflow past a large and diverse aerodynamic

geometry where certain accuracy still needs to be assured. OpenFOAM is based on Finite

Volume Method (FVM) that needs a mesh (an assemble of 3D cells that represents a volume

around an aerodynamic body) within which the airflow is being simulated. A large and

geometrically diverse object therefore needs a large mesh (large number of cells) in order to

satisfactorily describe its shape. Such a simulation can become even more demanding when

incorporating more accurate physical models or numerical schemes. Even though this is a

typical HPC problem, it is still planned to be used as a baseline in order to increase the

virtualised I/O efficiency of MIKELANGELO cloud stack.

2.1 Use Case Description

The cases to be studied will be from simple 2D airfoil analyses, which we call Simple Case

(SC), and from full 3D configurations, which we call Heavy Case (HC). Both SC and HC will

be run on as many different sets of parameters as possible in a simultaneous manner, while a

heavy HC will be prepared in order to be run in parallel on multiple nodes. An example of a

SC geometry, an airfoil, is depicted inFigure 1. This contour presents a 2D shape of a wing as

seen in a cross-section at some chosen point along the wing. A complete airplane wing

therefore consists of an array of airfoils along the wing in span-wise direction that is lofted

between each other. During an aerodynamic design of a wing the designer must first know the

characteristics of its basic building blocks, the airfoils. The designer must know how the

airfoil behaves at different angles of attack (AoA) and Reynolds numbers (Re) in order to

estimate how the wing will behave in different flight regimes (take-off, cruise, landing).

Typical quantities that are needed are coefficients of lift, drag and moment.

Public deliverable

© Copyright Beneficiaries of the MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.10 Page 11 of 39

An example of lift coefficient dependence with respect to the AoA at a single Re is depicted

inFigure 2. If the AoA increases, the lift coefficient increases accordingly but only to the point

where the airfoil stalls and the lift coefficient drops. Although there is a continuous curve

presented on the plot, in reality the designer is limited in time and computer resources and is

therefore not able to calculate a desired number of points on the curve. The computational

complexity scales exponentially with the number of additional parameters introduced such as

Re.

Figure 1: An example of a SC geometry, an airfoil.

Figure 2: An example of a lift to AoA dependence.

One of the objectives of this use case is therefore to run a large number of simulations

simultaneously to obtain results at all needed sets of parameters, that is AoA and Re, at

approximately the same time. Pipistrel’s in-house cluster currently consists of 2 nodes, each

with 8 cores, which results in 16 simulations at a time, if each one is run on a single core.

Using the MIKELANGELO stack Pipistrel will be able to employ much larger machines,

Public deliverable

© Copyright Beneficiaries of the MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.10 Page 12 of 39

which will allow a larger number of simultaneous simulations. Even more important, Pipistrel

will gain the know-how to use not only HPC, but also the cloud-based hardware and software,

which will introduce greater flexibility to the workflow and possibly also reduce fixed

operating costs in the future.

The second use case to be studied under the MIKELANGELO project consists of a wing and

a larger number of propellers in front of the wing (Figure 3). In this HC a distributed

propulsion system will therefore be studied. Parameters of interest beside AoA and Re are the

side-slip angle, the propeller’s position and its thrust. Besides computationally more intensive

simulations with respect to the SC, there is also a larger number of parameters to vary. The

plan is to start with a single propeller and corresponding wing section (Figure 4) in order to be

able to run the problem on a single node and to finish with a complete wing run on multiple

nodes. Intermediate steps will consist of gradually increasing the mesh size and the physics of

the problem. The final full wing simulation will be run with a single set of parameters, chosen

according to the lessons learned from previous steps. The objective is therefore to study the

position and thrust of propellers in order to obtain satisfactory wing flight characteristics.

Figure 3: Complete wing with several propellers in front.

The objectives of a case with a single propeller and the corresponding wing section are similar

to the SC that is to increase the number of cases run simultaneously to accelerate each

simulation with MIKELANGELO stack optimization and to improve the agility of application

Public deliverable

© Copyright Beneficiaries of the MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.10 Page 13 of 39

deployment. The latter consists of replacement of current bash scripting with a more efficient,

simpler and user-friendly GUI interface that will allow the user to choose the parameters to

vary with the corresponding values. On the other hand, the objective in the case of the final

full wing simulation at a single set of parameters run in parallel on several nodes is to show

the increase of efficiency in virtualised I/O of MIKELANGELO stack.

Figure 4: A single propeller with a corresponding wing section.

2.2 Current Limitations

Currently, the workflow is governed by a scripted copying of a template case, adjusting the

parameters of each case, running of all cases and collecting the data from all cases. While the

process works, it is typically limited to a single node or at best a cluster of nodes if one is

available. This scripting approach severely limits the scope of analysis, especially if a number

of parameters are being adjusted simultaneously. Typical parametric studies require a large

number of OpenFOAM cases to attain the necessary parameter resolution. Furthermore, the

addition of extra cases in areas of parameters where greater parameter resolution is needed

may prove very cumbersome to achieve, using simple bash script modifications. Increased

resolution often means that in the case of only a limited number of available nodes, the cases

need to be scheduled in batches, unnecessarily increasing the overall computation time (wall

time). Although individual cases do not have high memory requirements, they start competing

for memory, disk (I/O) and processor resources when run on a single node with many cores.

Batch systems, such as PBS [3] or its free alternative Torque [4], greatly simplify execution

of many cases allowing submission of jobs into a shared queue where they are started by the

resource scheduler once resources are available. The end user is notified via email when

individual jobs are finished and the results are typically stored in a shared workspace. One

significant limitation of this approach is that the user has almost no control of when the jobs

Public deliverable

© Copyright Beneficiaries of the MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.10 Page 14 of 39

are scheduled for execution, which complicates the planning process since changes in the

product design are typically based on the results of previous experiments.

These limitations led to provisioning of more flexible approaches to running intensive

simulations on top of high performing clusters. For example, UberCloud [5] is using

containers to promote light-weight deployment of OpenFOAM and other HPC simulation

frameworks and engines. These are already pre-packaged with all tools required for starting

simulations, such aspre-processing, processing and post-processing. This significantly

simplifies the management of underlying compute nodes which relieves system administrators

from having to maintain different versions of software packages used by end users. However,

deploying changes into these packages is cumbersome and requires support from UberCloud

and changes requested by users typically affect all others. Furthermore, although container-

based technologies have recently been popularised by the advent of the application packaging

and management technology Docker [6] there are still important drawbacks, some of which

are mentioned in the list below:

● Security aspects of using containers are not well researched and are so far considered

less secure than environments with full virtualisation. In some cases, containers are

even run within a virtual machine, mostly due to security constraints.

● Hardware support: containers also have limited support for specialised hardware

such as Infiniband, in particular when sharing resources. This limitation will be

evaluated by this use case, as part of a baseline experiment.

● Kernel features: containers typically rely on very recent kernel updates. Maintaining

hundreds or even thousands of compute nodes requires careful planning of

infrastructure maintenance and does not allow for such frequent upgrades of core

packages.

2.3 Expectations from the MIKELANGELO Stack

The case analysis would ideally consist of an application that builds on an existing template

case, in which the parameters to be varied are designated. The application would allow the

user to define a set of parameter through a GUI and prepare the cases accordingly. The cases

would then be deployed automatically to the cloud. The application would allow the user to

monitor the execution and report possible crashes. When the cases are completed, the relevant

information would be assembled from all of them and entered into a common database of

computational results for the analysis. The application would further allow running more

cases in the areas of parameter values of more detailed interest. The full computational results

would reside on the nodes for a certain period of time, so that they may be checked for

subsequent validity. This may be simplified by pre-selecting only a few cases to be retained,

before deploying them.

Running the cases on the cloud allows them to have available all the necessary resources of a

single node for each individual case. By using cloud resources, many more cases can then be

run simultaneously, significantly increasing the parameter resolution without increasing

Public deliverable

© Copyright Beneficiaries of the MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.10 Page 15 of 39

computational times. A streamlined workflow with a well-designed results database would

allow the analyst to focus on the details of the results and not on preparation of cases.

Public deliverable

© Copyright Beneficiaries of the MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.10 Page 16 of 39

3 Use Case Set-up

3.1 Physical Hardware

As we have described in the Section 2, the primary goal of the aerodynamics use case is to

analyse the 2D/3D model of an aircraft or part thereof under a number of varying parameters.

From the construction point of view, the overall experiment consists of a series of rather small

simulations running between a few minutes and few hours. The execution time depends

primarily on the resolution of the input model.

It is estimated that the actual use case, once in full production, will range from 100 to 1000

input cases with varying input parameters. Each case would be run on 1-8 cores with 1GB of

memory. The exact number of processed cases will depend on the number of available

resources.

The initial testbed, used during the implementation and initial benchmarking of the use case

will be based on XLAB’s private small-scale cloud. A high-level overview of the

infrastructure is presented in theFigure 5, showing the clusters and network components. The

two clusters, namely OpenStack and Woody, are comprised of several nodes. The four

OpenStack nodes are interconnected with 10 Gbit network, however neither the switch nor the

network cables are high-end.

Figure 5: High-level overview of the XLAB infrastructure.

Public deliverable

© Copyright Beneficiaries of the MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.10 Page 17 of 39

The physical infrastructure provides 29 TB of available disk space, 672 GB of available RAM

and 90 CPU cores.

Additional experiments are planned on both the HLRS HPC infrastructure and GWDG Cloud

infrastructure. These two are described in reports D2.1 and D2.7.

3.2 Software

The aerodynamics use case has been chosen as an important representative of the broader

OpenFOAM user community to help to design, implement, validate and evaluate the whole

MIKELANGELO software stack.

OpenFOAM is one of the most popular and commonly used open source packages to perform

computational fluid dynamics (CFD). It allows researchers and product designers to analyse

the flow of gas or liquids through time. Development of OpenFOAM started in the late 1980s

and was initially released as open source software in 2004. Since then it has evolved into a

stable and extensive CFD platform with its latest stable release (2.4.0), which will be used

within this use case, in May 2015.

One of the crucial benefits of using OpenFOAM is the simplicity of constructing complex

CFD tasks by providing basic mathematical, physical and computational building blocks. On

top of these blocks few high level applications are already available as part of the

OpenFOAM distribution. Furthermore, third-party software developers can use these blocks

to tailor simulations to their needs. When using applications that are part of the OpenFOAM

distribution, the end user is required to provide the 2D or 3D input case in an appropriate

format and configure the simulation provided by the application. Allowing the application

developer to modify the entire workflow of the simulation allows them to change the

configuration parameters of the input case in the latter case.

The extensibility of OpenFOAM furthermore allows to scale applications from a single node

to thousands of nodes without any changes to the application code. The power of parallelism

is built into the underlying building blocks that are provided to the application software

developer. Jobs that run on a single node, or even a single core, are ideal in the initial phases

of the product design when high level decisions for the general direction of the design are

made. However, with the increased number of analysed parameters, resolution of the

underlying model, complexity of the simulation and number of time-steps OpenFOAM

simulations require highly performing clusters of compute nodes to reduce the wall time of

the analysis.

More recently, some attempts have been made to support running OpenFOAM in more agile

and flexible environments on top of container based technologies, such as Docker. This agility

opens completely new business models for infrastructure providers enabling them to run

OpenFOAM simulations on demand as a Software-as-a-service model.

MIKELANGELO will simplify deployment, management and execution of distributed

simulations on top of an in-house/HPC cluster even more by empowering a cloud-like

Public deliverable

© Copyright Beneficiaries of the MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.10 Page 18 of 39

interface to the underlying infrastructure. Storage and compute infrastructure will be

abstracted by means of OpenStack cloud-services and transparently interconnected for

optimal performance. Cross-layer optimisations to the hypervisor and guest operating system

will reduce the overhead of virtualised environments and approach the native performance of

the hardware, but with much improved manageability and security.

3.2.1 Selection

The aerodynamics use case will perform CFD simulations on some synthetic and real-world

cases using the open source software OpenFOAM 2.4.0 or newer, once available. As we have

already discussed in the previous section, OpenFOAM is an extraordinary open source project

with many different simulation models and processes which we intend to exploit at to the

fullest extent throughout the project to obtain best possible results for our business-driven use

case.

OpenFOAM does not provide parallel execution on its own. Instead, it provides a high level

abstraction of the parallel execution model in terms of a high level interface for various

underlying parallel execution implementations. This high level interface is defined in the

Pstream library, distributed as part of the OpenFOAM source package. The current version of

OpenFOAM only provides a PStream plug-in for MPI (Message Passing Interface)

implementations. Although we have mainly worked with OpenMPI [7], an open source

implementation of the MPI protocol, other implementations of MPI, such as MPICH [8] and

vendor-specific versions. are also supported.

In addition to OpenFOAM, the use case will rely on the following software packages

● Host operating system: for the first iteration of the use case, Ubuntu 14.04 has been

chosen as host OS. The primary reason for choosing this version is that it is the latest

long-term support release of Ubuntu. This version has also been chosen by the

consortium as the first version to be supported by the MIKELANGELO stack due to

its slim server image and compatibility with all of our use cases.

● Guest operating system

○ Ubuntu 14.04 will be used as a guest OS for the initial experiments.

○ The most recent version of OSv will be used as guest OS for additional

experiments. Upstream OSv changes will also be considered.

● Linux kernel: A kernel with version 3.18.x, which is the latest stable kernel tree with

long-term support will be used on the host. The long-term version is particularly

important for the work done on the modified hypervisor (sKVM), which relies on a

stable kernel code-base. It should be noted that Ubuntu 14.04 does not have Linux

kernel 3.18.x by default so it is necessary to upgrade the kernel.

● OpenMPI: OpenMPI with version > 1.6.5 will be used for the first iteration of the use

case. This is primarily because the initial analysis of the baselines indicates some

changes may be needed to the tools supporting spawning of parallel workers.

Other software packages are currently neither required nor envisioned for the first iteration of

the aerodynamics use case. There are also no specific requirements for the C/C++ compiler.

Public deliverable

© Copyright Beneficiaries of the MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.10 Page 19 of 39

The following section provides an initial analysis of the OpenFOAM package and its relations

with the MPI.

3.3 Execution

All input cases will be simulated using OpenFOAM’s existing solvers, for example

simpleFoam, serving as a proof of concept. Conceptually, the structure of different solvers is

very similar:

● read the definition of the input case, simulation parameters and initial values for

physical quantities,

● iterate a number of steps of the simulation,

● periodically provide output to the user for visualisation purposes,

● output final results after the execution.

This allows this use case to serve as a solid proof of concept for a broad range of problems

that may be addressed with default OpenFOAM solvers as well as custom solvers/applications

developed on top of OpenFOAM framework.

The complete workflow of an OpenFOAM application is described in detail in Section 4.

Simulations may be executed within a single worker process or in parallel. Parallel execution

requires two additional steps:

1. Domain decomposition: this step must be executed before the processing is started,

otherwise the simulation will fail. The domain must be decomposed into the same

number of sub-domains as there will be parallel processors working on these sub-

domains. Contrary to the Bones use case where workers are independent and the final

result is produced in the last stage, OpenFOAM workers must be fully synchronised to

maintain proper simulation step on the boundaries of all sub-domains at every time

step. Although each worker will initially load only its own sub-domain data, all sub-

domains must be accessible to all workers. This is because the worker will choose the

domain based on its MPI rank assigned during the bootstrapping of workers.

2. Result reconstruction: after all time steps are finished, partial results are stored in

separate folders. The final step will take all results from these sub-folders and produce

overall result.

Both these steps are efficient and require considerably less time than the simulation itself.

They are also not parallelised. Ideally, input and output data are stored in a shared workspace

eliminating the need to move inputs and outputs to and from worker nodes.

For development purposes a very small scale example will be used requiring 3-5 minutes on a

single node. For the validation purposes, three different models will be provided in this first

iteration. The model will have an increasing complexity and consequently run time: 15

minutes, 1 hour, and more than 4 hours when executed on a single core.

A case is prepared on a local machine. A management system is designed to handle

parameters and distribute the cases over Virtual Machines (VMs), monitor the execution and

collect the data at the end.

Public deliverable

© Copyright Beneficiaries of the MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.10 Page 20 of 39

3.4 Data

All input and output data consists of text files. An estimated size of a single SC lies between

10MB and 50MB. A size of a single HC lies between 250MB and 4GB. A typical case

consists of three folders. In folder “0” a complete mesh is defined together with all initial and

boundary conditions. The folder “constant” consists of physical constants, turbulent model

selection and all .stl files of the geometry used in corresponding case. The third folder

“system” includes files with user-defined parameters that steer the simulation. The contents of

this folder define which numerical schemes will be used during simulation, which solver

should be used to solve a system of linear equations, how much iteration should be computed,

and whether we want to calculate forces on the aerodynamic surfaces during the simulation.

Simulation results are written to separate time stampedfolders that let the expert to review the

progress of the simulation. If the simulation converges satisfactorily only the most recent

results folder needs to be kept in order to review the results. Although a large number of cases

is planned to be run, only a small amount of data needs to be extracted from the cloud back to

the local computer. The data we are interested in are forces and moments on specific

aerodynamic bodies.

3.5 Security

The input data used in OpenFOAM simulations are typically highly sensitive. These data

might include a 3D model of a new airplane or part thereof. Or it could show the design of the

hydro plant. Thus, security of data access is of utmost importance when offering simulation

software packages such as OpenFOAM as a service. The environment for execution and

global storage, such as a SAN, need to be trusted by end users. However, virtual

environments and sharing of physical resources open new ways for attackers to exploit the

infrastructure to gain information about other tenants’ data. For every commercial and even

many research organisations it is vital that the underlying infrastructure takes appropriate

measures to limit the ability for an attacker to obtain sensitive data.

3.6 Mandatory Requirements

The following is a list of requirements that need to implemented and integrated with cloud

management to achieve maximum performance gains. The requirements list is categorised in

the same way as it is in the requirements list. Each requirement further describes its

importance for this use case.

Application compatibility

Integrate NFS Client in OSv (#102).OpenFOAM requires that all worker processes

have access to the entire input set. Each worker only reads one single domain, i.e. part

of the complete 3D model.

Public deliverable

© Copyright Beneficiaries of the MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.10 Page 21 of 39

OpenFOAM running in OSv and sKVM (#37).OpenFOAM has already been ported

to run within OSv, however parallel execution is still an open issue. This requirement

refers to support for parallel simulations.

Guest virtio-rdma

DPDK integration on Guest (#70). This use case will benefit from using DPDK in

that it will support much more efficient communication between workers using

RDMA.

Integration of RDMA components with Ubuntu Guest (#75). Ubuntu is one of main

targets for a guest OS for running this use case. The results will be compared to OSv

benchmarks.

Integration of RDMA components with OSv guest (#73). Due to its small footprint

and fast boot times, OSv may support execution of a large number of cases on virtual

infrastructures. Since OSv will most probably not support running multiple workers

within one guest, it should be possible to compensate via inter-VM communication

through an efficient implementation of the RDMA.

Hypervisor

Hypervisor command line API (#3). The command line API for the hypervisor is

important for the evaluation of the Mikelangelo stack. This interface will allow to

seamlessly test execution for varying settings of the hypervisor.

Multi VMs shared memory communication (#7). Similarly to requirement #73 above.

It is crucial that OSv-based VMs communicate efficiently.

Hypervisor support for Ubuntu guest (#10). Ubuntu is the host OS of choice and is

therefore desired that it is supported.

Hypervisor support for OSv guest (#9).

Other low-level requirements for the hypervisor, such as those found in the categories

“Hypervisor virtio-blk/scsi”, “Hypervisor virtio-net” and “Hypervisor virtual switch”

indeliverable D2.19 The first MIKELANGELO architecture are important because

they will support some of the aforementioned high-level requirements of this use case.

We therefore do not provide extensive description of these requirements.

Infrastructure

Integration of the modified hypervisor with OpenStack (#18). As it was described in

Section 2.2 current execution of simulations does not allow for extensive testing.

Cloud integration is an important aspect of the MIKELANGELO project. This use

case expects to benefit from the cloud integration because it significantly simplifies

the execution of simulations. OpenStack, although not the only possible choice, would

allow great improvement to thecurrent workflow by providing a graphical user

interface similar to that of the Sahara dig data module.

Public deliverable

© Copyright Beneficiaries of the MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.10 Page 22 of 39

Monitoring

Capture performance metrics of guest OS - OSv (#42), Capture performance metrics

of host Hypervisor - sKVM (#41), Hardware Monitoring (#40). Capturing metrics

from all components of MIKELANGELO is particularly important for the evaluation

of this use case.

Monitoring GUI (#45). Having the ability to observe monitored values in a graphical

user interface is a must for such a high-level business use-case as it gives the user the

ability to observe patterns that would otherwise remain hidden.

Services/Applications Monitoring (#43). This is a highly desired capability of a

flexible monitoring system allowing application developers to provide metrics specific

to the application itself. One example of such a metric would be values provided by

OpenFOAM during calculation. It would help to observe these development values

through time and observe whether they are converging towards reasonable results.

OSv

All OSv requirements from deliverable D2.19 “The first MIKELANGELO

architecture” are important for this use case because they will influence the run time of

the simulation. As requirements are rather low-level we chose not to provide

additional descriptions as they will be available in the overall architecture document.

Security

Intrusion detection on Hypervisor level (#96). When OpenFOAM simulations are

executed in commercial offerings, it is fundamental that security measures are as high

as possible. For example, when a new product is being designed it is extremely

important to prevent anyone from having access to related 3D models and simulations.

Therefore, this use case will pay special attention to this requirement and provide

additional information for refinement of features in the intrusion detection module.

It is expected that this list will be revised by a number of additional requirements once more

thorough benchmarks are possible in different deployment scenarios.

3.7 Key Performance Indicators

This section describes KPIs from the Grant Agreement of the MIKELANGELO project and

proposes specific metrics that will be used to measure progress and provide the basis for the

validation and evaluation of the MIKELANGELO stack. Both KPIs as well as metrics will be

updated on a regular basis to provide deeper insights into evaluation. Only those KPIs were

chosen that are relevant for this use case. We are going to extend the list of KPIs and metrics

in each iteration of this report.

KPI1.1: relative efficiency of bursting a number of virtual machines. OpenFOAM cases

are typically analysed under different starting conditions resulting in a large number of

Public deliverable

© Copyright Beneficiaries of the MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.10 Page 23 of 39

processing requests. This KPI evaluates two aspects of bursting a number of virtual machines

(processes):

Time required for a number of simultaneous simulations (this number will vary) to

start processing.

Subjective evaluation of the workflow for starting a number of simultaneous

simulations.

KPI2.1: relative efficiency of virtualized I/O between KVM and sKVM (developed in the

project). Although OpenFOAM is a primarily CPU-bound application, I/O plays an

important role for reading input files, writing results and for communication between worker

processes. The following is a list of metrics that will be used to evaluate this KPI

Execution time in different scenarios over an ordinary network. These scenarios

include configurations with a single worker, multiple workers on a single nodeand

multiple workers on multiple nodes. This will show how in-house, small scale,

clusters will benefit from MIKELANGELO.

Execution time in different scenarios, as above, over specialised interconnects, such as

Infiniband and RoCE. The purpose of this evaluation will be to measure performance

gains in high-performance clusters.

Additional low-level metrics will be chosen based on the hypervisor and guest OS. For

example these metrics may include the number of exits, context switches and wait

times.

KPI3.1: The relative improvement of efficiency of MIKELANGELO OSv over the

traditional guest OS. During the first project year, Ubuntu 14.04 will be used as a

representative of traditional guest OSs. The following metrics will be used to evaluate the

progress of MIKELANGELO.

Size of virtual images.

The boot time as measured by the time required to spawn a new VM and start the

processing on a single node using qemu or libvirt via its Command Line Interface

(CLI).

The boot time as measured by the time required to spawn a new VM and begin

processing on the OpenStack cluster.

Run times for simulations under different configurations regarding the number of

worker processes, input cases, and available physical nodes.

KPI3.2: The relative improvement of efficiency [size, speed of execution] between the

Baseline Guest OS vs. the MIKELANGELO OSv. This KPI focuses on benefits of the

MIKELANGELO project for the OSv. Similar metrics as for KPI3.1 will be used to evaluate

the progress.

Public deliverable

© Copyright Beneficiaries of the MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.10 Page 24 of 39

KPI3.3: The relative improvement of compatibility between baseline and

MIKELANGELO versions of OSv. The goal of this use case is to support transparent

execution of OpenFOAM simulations, regardless of the underlying infrastructure. To measure

this KPI the following metrics will be monitored:

OpenFOAM/OpenMPI support in OSv

Number of implemented and/or updated POSIX functions

Number of implemented and/or updated system calls

KPI4.1: A system for appropriately packaging of applications in MIKELANGELO OSv

is provided. The following metrics are mostly subjective and will be evaluated by business

end-users. This will be critically assessed and compared to other existing systems.

Flexibility of creating new application packages

Ability to merge different packages into single image

Ability to integrate with existing cloud management system, such as Open Stack,

Amazon, etc

Ability to work with different package repositories, preferably simultaneously.

KPI4.2: A relative improvement of efficiency [time] between deploying a packaged and

non-packaged application.

Time to build the package measured from the perspective of an end-user.

Time to deploy the package into a shared workspace and/or cloud management system

from where it is possible to start virtual machines from these packages

Time required to start processing from an already packaged application compared to

the time required to prepare the application and start processing in the cloud

Focus will be made on comparing these times running on a multi-node cluster

KPI5.1: Demonstration of a management infrastructure on diverse physical

infrastructures. Since this use case may be executed in a heterogeneous cluster, such as a set

of idle machines in-house, it is important to facilitate execution of applications on diverse

physical infrastructures. No clear metric may be defined, however during the evaluation we

intend to setup such a cluster to test the behaviour or the application.

KPI5.2: Relative efficiency [time, CPU, disk overheads] of traditional HPC over Cloud

HPC offered in MIKELANGELO. This KPI will provide a high-level overview of most of

the other KPIs evaluated on an fully integrated MIKELANGELO stack. Metrics chosen will

be similar to KPI3.1 but measured from end-user’s perspective.

KPI7.1: All use cases appropriately demonstrated. This KPI will be fulfilled by this use

case once all typical uses of OpenFOAM simulations are supported by MIKELANGELO.

Public deliverable

© Copyright Beneficiaries of the MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.10 Page 25 of 39

The KPI will therefore measure the number of typical uses of OpenFOAM. We expect that

between 3 and 5 ways to run cases will be demonstrated, for example

Single worker on one case. This is already supported with changes made to OSv and

OpenFOAM build process.

Multiple workers on different cases (all initiated simultaneously). Running

multiple workers, each calculating one input case, is already possible using time-

consuming scripts. However, this metric will be fulfilled when starting multiple

workers will be handled by the cloud management framework.

Multiple workers on a single case. As presented in previous sections, this is

currently unsupported within OSv and will be the main focus of this use case. During

the evaluation we will analyse MIKENAGELO stack running multiple parallel

workers on a single node and a number of nodes.

KPI7.2: Documentation of using MIKELANGELO in use cases - Best Practices tutorial.

The entire workflow will be thoroughly documented allowing the broadest possible audience

to use OpenFOAM and OpenMPI on top of MIKELANGELO. We will communicate

intensively with external entities.

KPI7.3: Documentation of using MIKELANGELO in use cases - Documented Benefits.

Benefits will be documented in all use case reports.

We have tried to identify relevant metrics for all of the KPIs that will be observed by the

MIKELANGELO project as a whole. For those that are relevant we have provided initial

metrics that will be used for evaluation of the project. Some metrics are rather subjective but

we nevertheless decided to include them because it is important for the uptake of such

complex stack to include also the feelings of business stakeholders.

An important outcome of this preliminary study is that the consortium has already provided

progress towards the final goal. By extending the OSv kernel we have already been able to

execute simple simulations within OSv which is a massive success.

Public deliverable

© Copyright Beneficiaries of the MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.10 Page 26 of 39

4 Analysis of OpenFOAM Execution Modes

For the purposes of this section, the use of OpenFOAM with the simpleFoam solver has been

studied to better understand the generic structure of OpenFOAM applications. It was further

studied how the parallelism using MPI is built into the package because. According to the

OpenFOAM documentation, most other solvers and applications based on the OpenFOAM

library follow a similar approach and also support similar configuration options.

4.1 Parallel Execution

Before we describe the actual code, it is important to understand what it actually means to run

an OpenFOAM application in parallel. OpenFOAM operates on a 3D mesh that is one of the

most important parts of a particular input case. When OpenFOAM operates in parallel mode,

it decomposes the entire model into several sub-regions, called domains in OpenFOAM, it

runs the OpenFOAM solver on each of the domains in parallel, it exchanges information

between adjacent solvers, and finally it reconstructs the partial solutions into one overall

solution.

4.1.1 Domain Decomposition

The first step in running OpenFOAM in parallel is to decompose the entire domain space into

two or more sub-domains. OpenFOAM provides a utility called decomposePar aiming to

divide the domain with minimal effort while guaranteeing reasonable decomposition. The

latter goal is mandatory because parallel OpenFOAM must ensure to provide the exact same

solution as in single process execution. Since the decomposition divides the entire 3D mesh,

parallel processes have to communicate between each other. However, communication is only

needed between adjacent sub-domains. It is therefore important that the decomposition

provides minimal interactions between different processes reducing the amount of time spent

for communication.

The decomposition is configured in the system/decomposeParDict file part of the input case

itself. A thorough description of the file is out of scope of this document, but there are several

important parts one must understand prior to using it:

● numberOfSubdomains defines the number of sub-domains decomposePar should

decompose the original domain into. It is typically set to the number of cores

OpenFOAM will be executed on. Since there is no multi-threading within

OpenFOAM this assumption is reasonable.

● method defines the method used for decomposing the domain. Available options are

“simple”, “hierarchical”, “scotch”, “metis” and “manual”:

○ simple splits the domain in X, Y, Z directions,

○ hierarchical is similar to simple but allows changing the order of directions,

○ scotch requires no geometric input from the user and attempts to minimise the

number of processor boundaries,

Public deliverable

© Copyright Beneficiaries of the MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.10 Page 27 of 39

○ metis is similar to scotch, but uses a different algorithm: it decomposes the

domain using the METIS algorithm, which tries to minimize the

communication between processors. It allows specifying weights for the

different processors if they have different performance.

○ manual allows users to manually decompose the domain and provide sub-

domain configurations on their own.

● <method>Coeffs is the part of the configuration file where chosen method is

configured in more details (for example, for hierarchical, the user may provide the

order of directions and number of domains in each direction).

Further information on decomposeParDict is available in the OpenFOAM documentation [9].

Once the configuration is provided, decomposition can be invoked using

decomposePar-case/path/to/case

The output log provides valuable information, in particular the number of faces of the input

3D model shared with other processors. As a result, the input case contains a set of sub-

folders called processorN (N=0, 1, 2, …) for every sub-domain, that is for each processor. If

multiple nodes are involved in the OpenFOAM calculation, each node must have access to the

entire input case directory, including sub-folders for other processors. It can either be shared

via a network share or copied to all nodes involved in the calculation.

4.1.2 Running in Parallel

Once the domain is properly decomposed running OpenFOAM in parallel is just a matter of

submitting a job via the MPI infrastructure layer. OpenFOAM defaults to using OpenMPI,

which can be started by

mpirun-np N simpleFoam-case/path/to/case-parallel

In this case, N parallel processes will be spawned working in parallel on the same input case.

It is assumed that prior to issuing this command, the domain has been decomposed into N

sub-domains. Although mpirun itself is responsible for spawning a number of parallel

processes, the last switch (-parallel) is mandatory as it tells OpenFOAM it should be

initialised to run in parallel.

4.1.2.1 Running on Multiple Nodes

Running OpenFOAM, or any MPI application, on two or more compute nodes requires some

initial configuration of all systems. First, one must distinguish the master node from all other

nodes. The master node is the one from which the parallel execution is started or requested.

Nevertheless, the master may also be used for actual calculation.

First, the master must have access to all compute nodes that are to be used in the calculation.

The list of nodes is specified in a separate configuration file listing names and a number of

processors available for MPI processes, for example:

host1

Public deliverable

© Copyright Beneficiaries of the MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.10 Page 28 of 39

host2

host3cpu=4

Hostnames specified in this file must be resolvable on master allowing mpirun to spawn new

processes. This can either be achieved by a DNS or by providing entries in the /etc/hosts file.

Once hostnames are resolvable, the master node must also be able to connect to every

compute node via SSH protocol. The login uses the same username as the one used on the

master to start calculation. Since MPI will not ask for passwords, the public key of the master

node must be shared with all slaves. This can simply be achieved by creating a password-less

key-pair

ssh-keygen

and adding the public key (~/.ssh/id_rsa.pub) into the list of authorized keys

(~/.ssh/authorized_keys) on all slaves. You may verify that you are able to connect to slaves

via SSH with the following command:

ssh<slave-hostname>

It is important that no username should be provided in the above command as the MPI will try

to log as the user starting mpirun on the master.

Once the master is able to connect to all slaves it is time to make sure all slaves are configured

in the same way with respect to the OpenFOAM. The mpirun command will always use the

current working directory on the master on all compute nodes, meaning that all nodes must

have OpenFOAM installed at exactly the same location. For example, when compiling

OpenFOAM from sources, you may have OpenFOAM stored in ~/OpenFOAM/OpenFOAM-

2.4.0 and simpleFoam in

~/OpenFOAM/OpenFOAM-2.4.0/platforms/linux64GccDPOpt/bin/simpleFoam

Furthermore, you must also ensure that the OpenFOAM’sinit script is executed even for non-

interactive (SSH) shells like the one that will be used by MPI. This depends on the Linux

version, but on Ubuntu 14.04 it can be done simply by putting

.~/OpenFOAM/OpenFOAM-2.4.0/etc/bashrc

at the very top of the ~/.bashrc (if one is using default ~/.bashrc, chances are there a condition

skipping all settings when not running interactively). This must again be configured on all

slaves.

Last step before the processing may start is distributing the input case that has already been

decomposed. When NFS or another shared workspace is used, this is not required as all

compute nodes will have access to the same input case. However, all nodes must mount the

shared workspace at the same mount point. OpenFOAM can be run without a shared

workspace by copying the input case to all nodes. Although each process will use only the

processorN sub-folder of the decomposed input case, the entire case must be copied to all

slaves because MPI will assign processor IDs (ranks) dynamically.

Public deliverable

© Copyright Beneficiaries of the MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.10 Page 29 of 39

Finally, running OpenFOAM on several compute nodes can be invoked by the following call:

mpirun-np N --hostfile=/path/to/hostfilesimpleFoam-case/path/to/case-parallel

4.1.3 Reconstruction of Partial Results

Following a successful execution, the user must finally merge partial results into an overall

solution. The case is reconstructed by merging the sets of timestamped directories from each

processorN directory into a single set of timestamped directories. The reconstruction can be

invoked using

reconstructPar-case/path/to/case

producing the final set of timestamped directories.

4.2 The Orted Daemon

When a single compute node is used for parallel execution mpirun spawns several processes

directly. When multiple nodes are used, mpirun connects to each of the slaves listed in the

hosts file via SSH and starts the orted daemon, part of ORTE (Open Run-Time Environment),

which is finally responsible for spawning processes on remote slave nodes. The exact

command that is used to start orted on a slave is

ssh-x <slave-name>orted--daemonize-mcaessenv-mcaorte_ess_jobid2826240000-mcaorte_ess_vpid1-

mcaorte_ess_num_procs2--hnp-

uri2826240000.0;tcp://172.16.118.65:345602826240000.0;tcp://172.16.118.65:34560 -mcaplmrsh

The following is an example of the orted command line while started with two processors on

two different nodes:

orted--daemonize-mcaessenv-mcaorte_ess_jobid2826240000-mcaorte_ess_vpid1-

mcaorte_ess_num_procs2--hnp-uri2826240000.0;tcp://172.16.118.65:34560 -mcaplmrsh

The IP in the --hnp-uri flag is the IP of the master node.

4.3 Code Analysis

The following listing presents the main structure of the simpleFoam application.

#include"fvCFD.H"

#include"singlePhaseTransportModel.H"

#include"RASModel.H"

#include"simpleControl.H"

#include"fvIOoptionList.H"

// * //

Public deliverable

© Copyright Beneficiaries of the MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.10 Page 30 of 39

int main(intargc,char*argv[])

{

#include"setRootCase.H"

#include"createTime.H"

#include"createMesh.H"

#include"createFields.H"

#include"createFvOptions.H"

#include"initContinuityErrs.H"

simpleControl simple(mesh);

// * //

Info<<"\nStarting time loop\n"<<endl;

while(simple.loop())

 {

Info<<"Time = "<<runTime.timeName()<<nl<<endl;

// --- Pressure-velocity SIMPLE corrector

 {

#include"UEqn.H"

#include"pEqn.H"

 }

 turbulence->correct();

runTime.write();

Info<<"ExecutionTime = "<<runTime.elapsedCpuTime()<<" s"

<< " ClockTime = " <<runTime.elapsedClockTime() << " s"

<<nl<<endl;

 }

Public deliverable

© Copyright Beneficiaries of the MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.10 Page 31 of 39

Info<<"End\n"<<endl;

return0;

}

Although the first #include within the main() function indicates only a simple definition of the

input case definition it does a lot more as the following code listing from

“src/OpenFOAM/include/setRootCase.H” reveals

Foam::argListargs(argc,argv);

if(!args.checkRootCase())

 {

Foam::FatalError.exit();

 }

The first line of this listing initialises the argList object passing arguments from main function

to the object itself. At the top of the argList constructor there is a check for the “-parallel”

switch found in the command line arguments that causes OpenFOAM application to initialise

parallelism using the Pstream library. Here is a listing from

“src/OpenFOAM/global/argList/argList.C”:

// Check if this run is a parallel run by searching for any parallel option

// If found call runPar which might filter argv

for(intargI=0;argI<argc;++argI)

 {

if(argv[argI][0]=='-')

 {

constchar*optionName=&argv[argI][1];

if(validParOptions.found(optionName))

 {

parRunControl_.runPar(argc,argv);

break;

 }

 }

Public deliverable

© Copyright Beneficiaries of the MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.10 Page 32 of 39

 }

Pstream library is a wrapper library allowing OpenFOAM to work with an arbitrary

implementation of the MPI standard as well as any other infrastructure layer supporting the

required mechanisms. Currently, there is also support for Gamma besides MPI. In the above

code listing runPar is a simple function invoking the implementation of the init() function of

the underlying infrastructure layer:

voidrunPar(int&argc,char**&argv)

 {

RunPar=true;

if(!Pstream::init(argc,argv))

 {

Info<<"Failed to start parallel run"<<endl;

Pstream::exit(1);

 }

 }

Finally, the following listing shows the MPI implementation of the init function:

boolFoam::UPstream::init(int&argc,char**&argv)

{

MPI_Init(&argc,&argv);

intnumprocs;

MPI_Comm_size(MPI_COMM_WORLD,&numprocs);

intmyRank;

MPI_Comm_rank(MPI_COMM_WORLD,&myRank);

if(debug)

 {

Pout<<"UPstream::init : initialised with numProcs:"<<numprocs

<< " myRank:" <<myRank<<endl;

 }

Public deliverable

© Copyright Beneficiaries of the MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.10 Page 33 of 39

if(numprocs<=1)

 {

FatalErrorIn("UPstream::init(int&argc, char**&argv)")

<< "bool IPstream::init(int&argc, char**&argv) : "

"attempt to run parallel on 1 processor"

<< Foam::abort(FatalError);

 }

// Initialise parallel structure

setParRun(numprocs);

returntrue;

}

The most important part is the MPI_Init call at the beginning of the function making sure the

MPI process is properly initialised. Since the OpenFOAM solver is started using the mpirun

command

$ mpirun-np N simpleFoam-case/path/to/case-parallel

each simpleFoam processes spawned by the MPI infrastructure will call appropriate

initialisation and get its own rank from MPI.

4.4 Communication Between Workers

The PStream library abstracts input and output layers by means of two additional classes,

namely UIPread and UOPWrite. These provide read and write methods respectively. PStream

supports three different communication modes: blocking, scheduled and non-blocking. The

following presents the mapping between PStream modes and MPI modes as currently

implemented within OpenFOAM:

● Read operations

○ blocking and scheduled: MPI_Recv

○ non-blocking: MPI_Irecv

● Write operations

○ blocking: MPI_Bsend

○ scheduled: MPI_Send

○ non-blocking: MPI_Isend

Public deliverable

© Copyright Beneficiaries of the MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.10 Page 34 of 39

5 Implementation Plan

Since OpenFOAM is already a stable solution and since it relies on MPI to achieve

parallelism, the implementation of this use case will mainly focus on improving support

inside OSv and on integrating it with the cloud management system provided by the

MIKELANGELO stack.

For the purpose of the initial analysis, OpenFOAM has already been configured and

recompiled in a way suitable for running within OSv as a single process. Although

OpenFOAM is a large open source project, only few minor changes to OSv were required to

support additional system calls, such as 204 - sched_getaffinity and 239 - get_mempolicy, and

standard functions, such as faccessat, __fxstatat and malloc_hook. Patches for all these

modifications and additions to OSv have already been submitted by Cloudius Systems to

upstream to OSv’s source tree.

These patches already support running OpenFOAM on input cases provided by this use case

by a single worker, that is as non-parallel version, resulting in the initial benchmark. We

compare the results with those obtained with a Linux guest. Since parallel execution of

OpenFOAM and OpenMPI is provided by spawning two or more processes, running

simulations in parallel is not possible at the moment inside OSv. Solving this will be one of

the biggest challenges for OSv and MIKELANGELO from the perspective of this use case.

The initial idea to support parallel execution was to try to start multiple threads instead of

processes within a single OSv instance. However, we have already analysed OpenFOAM and

discovered that it uses several global variables. Global variables are shared between all

threads of one process, thus simply replacing MPI processes with MPI threads within one

OSv process will cause problems. Multiple threads would be changing the same set of global

variables instead of multiple versions of them. For example, what each MPI process treats as

its input sub-domain would now be shared among all threads. Nevertheless, we intend to

further assess whether replacing MPI processes with OSv threads is possible, for example by

examining whether global variables may be used differently. This would facilitate execution

of parallel simulations within one single VM.

However, running parallel simulations in different VMs would still require some changes to

MPI. More specifically changes to the daemon responsible for bootstrapping workers would

be required. Thus, the second approach to running OpenFOAM in parallel assumes that each

worker is an individual OSv-based VM. This will not create significant overhead because

starting a single OSv image that consequently starts the OpenFOAM calculation is almost

instantaneous. However, this approach would require changes in the MPI middleware, for

example in mpirun and in the orted daemon that have been described in the previous section,

to bootstrap workers. With the improved RDMA support that MIKELANGELO will deliver,

this separation of workers into VMs should not produce a significant overhead. However, it

would significantly improve the flexibility of running experiments. Because this approach is

not strictly related to the OpenFOAM, all MPI based applications would again from it.

Public deliverable

© Copyright Beneficiaries of the MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.10 Page 35 of 39

6 Evaluation and Validation Plan

The aerodynamics use case intends to use several different baselines focusing on different

aspects of running OpenFOAM-based simulations on top of existing architectures and

comparing them with those available by the MIKELANGELO stack. The following list

proposes the initial set of configurations used to benchmark and compare execution times as

well as manageability of starting simulations and collection of the results. All Linux tests

have been conducted using Ubuntu 14.04.03 (host and guest).

1. Linux Host (host baseline). We evaluate the performance of OpenFOAM running 1,

2, 4 and 8 parallel processes.

2. Linux Guest (virtualised baseline). Performance of OpenFOAM running 1, 2 and 4

parallel processes was examined.

3. OSv Guest. Current benchmarks only show results for running single OpenFOAM

worker within OSv due to limitations.

All experiments with VMs have been performed using the version of KVM that was available

in the Ubuntu 14.04.03. Furthermore, all VMs have been configured the same for Linux and

OSv guests.

The experiments in the above list are targeting one single compute node. Once the high-end

HPC testbed is available this list will be extended with additional experiments focusing on

exploitation of high performing interconnects, such as Infiniband and RoCE.

6.1 Initial Baselines

This section presents the set of initial baselines for those configurations in the previous

section that can already be executed The baselines focus on OSv compatibility and on

execution times of reference simulations.

6.1.1 OSv Compatibility

One of the most important baselines is the support for different modes of operation of

OpenFOAM and OpenMPI. As of writing this report OSv supports running a single worker

within OSv. Prior to the MIKELANGELO project, starting OpenFOAM within OSv was not

possible due to the nature of OpenFOAM compilation and missing standard functions from

the OSv kernel and the standard library. These have already been resolved in the first 6

months of the project. Neither parallel execution on a single node nor multiple nodes is

supported in OSv.

All these modes are supported by Linux hosts and Linux guests.

6.1.2 Execution Times

Many different parameters affect the duration of execution, as measured by the wall time, of

the simulation. For the initial experiment we will focus on a small number of parameters,

which allows us to provide some basic comparisons between different options. No kernel

Public deliverable

© Copyright Beneficiaries of the MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.10 Page 36 of 39

optimisations have been performed and the same QEMU configuration has been used for

Ubuntu and OSv guests. Total durations are shown in Table 1for three chosen input cases.

Each experiment has been executed three times and only a single worker was used to solve

the simulation.

Table 1: Execution times for three input cases using one worker process.

Configuration mik3d_15min [s] mik3d_1h [s] mik3d_4h [s]

Ubuntu host 633 1634 10070

Ubuntu guest

(1VCP)

646 1665 10235

Ubuntu guest (2

VCPU)

643 1656 10159

OSv guest (1 VCPU) 654 1680 10209

The durations for OSv also contain the time to boot and shutdown the VM while the Ubuntu

guest was already running prior to starting the benchmark. It takes approximately 5-10

seconds before the processing in Ubuntu can start.

Table 2 shows total durations for different configurations when using two or more parallel

workers for each input case.

Table 2: Execution times on the same three input cases using two or more MPI processes.

Configurati

on

Workers mik3d_15mi

n [s]

mik3d_1h

[s]

mik3d_4h

[s]

Average

speed-up

Ubuntu host 2 534 1220 7605 1.28

Ubuntu host 4 461 1173 7450 1.37

Ubuntu host 8 450 1140 7311 1.41

Ubuntu guest

(2 VCPU)

2 576 1345 8351

1.20

Ubuntu guest 2 511 1238 7718 1.31

Public deliverable

© Copyright Beneficiaries of the MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.10 Page 37 of 39

(4 VCPU)

Ubuntu guest

(4 VCPU)

4 465 1166 7336

1.40

Although total durations are shorter increasing the number of parallel workers, the durations

do not scale linearly. This can be observed in the Average speed-up column showing the ratio

between the execution time of a single worker and the corresponding number of parallel

workers. Ideally, the speed-up would be equal to the number of parallel workers. Speed-up

was cal. Test was conducted on a computer with Intel(R) Core(TM) i7-3770 CPU @ 3.40GHz

processor and 16 GB of RAM.

Table 3 shows results on the same three input cases running on a computer with Intel Xeon

x5550 @ 2.67GHz processor and 66 GB of RAM. The results are only available for Linux

host and are presented in the following table.

Table 3: Execution times on three input cases using different number of workers.

Configurati

on

Workers mik3d_15mi

n [s]

mik3d_1h

[s]

mik3d_4h

[s]

Average

speed-up

Ubuntu host 1 994 2580 16150 -

Ubuntu host 2 520 1340 8390 1.92

Ubuntu host 4 316 809 5066 3.17

Ubuntu host 8 288 729 4401 3.55

Parallelism in this case is much more evident; however the overhead of communication

between workers increases significantly. The average speed-up column shows the ratio

between execution time of a single worker compared to the corresponding number of parallel

workers. Ideally, the speed-up would be the number of parallel workers.

Public deliverable

© Copyright Beneficiaries of the MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.10 Page 38 of 39

7 Conclusions

The aerodynamic map use case will at the beginning of the project focus mainly on running

OpenFOAM in OSv, where the main goal is to run OpenFOAM simulations in parallel. The

SCs will later serve as baselines for OSv and sKVM optimisations, graphical user interface

design and to tackle security concerns. The HCs will mostly serve as a baseline for the

virtualised I/O efficiency improvement.

The bash scripting-based procedure currently used at Pipistrel represents a rather cumbersome

workflow for aerodynamic map analysis. Additionally, the number of simultaneously run

simulations is limited only to a small number of available computer cores located on the local

machine. We intend to upgrade this workflow using cloud infrastructure, which will allow it

to deploy a set of simulations more easily and to obtain more results at the same time. The

MIKELANGELO project offers Pipistrel an excellent way to achieve this goal. The project

will enable Pipistrel to learn how to prepare use cases ready for cloud infrastructure, to gain

deeper knowledge of OpenFOAM operation and to gain a large amount of knowledge

regarding cloud computing. On the other hand, the aerodynamic use case will deliver a set of

baselines used to demonstrate improvements of different MIKELANGELO stack

components.

Public deliverable

© Copyright Beneficiaries of the MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.10 Page 39 of 39

8 References and Applicable Documents

[1] http://www.mikelangelo-project.eu/

[2] http://www.openfoam.org

[3] http://www.pbsworks.com/Product.aspx?id=1

[4] http://www.adaptivecomputing.com/products/open-source/torque/

[5] http://www.theubercloud.com

[6] https://www.docker.com

[7] http://www.open-mpi.org

[8] http://www.mpich.org

[9] http://cfd.direct/openfoam/user-guide/running-applications-parallel/

http://www.mikelangelo-project.eu/
http://www.openfoam.org/
http://www.pbsworks.com/Product.aspx?id=1
http://www.adaptivecomputing.com/products/open-source/torque/
http://www.theubercloud.com/
https://www.docker.com/
http://www.open-mpi.org/
http://www.mpich.org/
http://cfd.direct/openfoam/user-guide/running-applications-parallel/

	1 Introduction
	2 Use Case Definition
	2.1 Use Case Description
	2.2 Current Limitations
	2.3 Expectations from the MIKELANGELO Stack

	3 Use Case Set-up
	3.1 Physical Hardware
	3.2 Software
	3.2.1 Selection

	3.3 Execution
	3.4 Data
	3.5 Security
	3.6 Mandatory Requirements
	3.7 Key Performance Indicators

	4 Analysis of OpenFOAM Execution Modes
	4.1 Parallel Execution
	4.1.1 Domain Decomposition
	4.1.2 Running in Parallel
	4.1.2.1 Running on Multiple Nodes

	4.1.3 Reconstruction of Partial Results

	4.2 The Orted Daemon
	4.3 Code Analysis
	4.4 Communication Between Workers

	5 Implementation Plan
	6 Evaluation and Validation Plan
	6.1 Initial Baselines
	6.1.1 OSv Compatibility
	6.1.2 Execution Times

	7 Conclusions
	8 References and Applicable Documents

