Public Deliverable J
<« &RS\ULJKW % H Q HMIKELADNGHLBE YrdfectV MIKELANGELO

«

MIKELANGELO

D2.19
The first MIKELANGELO architecture

Workpackage: | 2 Use Case & Architecture Analysis

Author(s): Michael Gienger HLRS
Nico Struckmann HLRS
Uwe Schilling HLRS
Peter Chronz GWDG
Maik Srba GWDG
Gabriel Scalosub BGU
1DGDY +DUY(O Cloudius

Reviewer Eyal Moscovici IBM

Reviewer Gregor Berginc XLAB

Dissemination :
Public

Level

Project No. 645402 MIKELANGELO Deliverable D2.19 Pagel of 49

Public Deliverable

<« &RS\ULJKW % H Q HMIKELADGHLB Vrdfelct V MIKELANGELOJ

Date Author Comments Version | Status
201508-05 | Michael Gienger Initial draft V0.0 Draft
201508-07 | Nico Struckmann, Additions V0.1 Draft
Uwe Schilling
201508-12 | Nico Struckmann, Additions V0.2 Draft
Uwe Schilling
201508-20 | Peter Chronz Added description of the cloud V0.3 Draft
integration
201508-21 | Nico Struckmann Inclusionand Arrangement of the V0.4 Dratft
various partner contributions
201508-26 | Micheal Gienger Document finalized. V0.5 Review
Nico Struckmann, Ready for review.
Uwe Schilling
201508-31 | Nico Struckmann, Finalization of the Deliverable V1.0 Final
Michael Gienger

Project No. 645402

MIKELANGELO Deliverable D2.19

Page2 of 49

Public Deliverable J
<« &RS\ULJKW % H Q HMIKELADGHLBD YrdfelctV MIKELANGELO

Executive Summary

This deliverable is the first of three deliverables dealing with the overall architecture for
MIKELANGELO and therefore, acts as a baseline for all the upcoming deliverables and
developments. It covers all the mandatory infation, starting from requirements, reaching

to design and development plans and indicates already specialized information, such as the
foreseen underlying software versions for the developments.

This document describes the overall goals of MIKELANGEL®@ antlines its approach. In

order to generate a novel standard technology, various kinds of requirements have been
introduced: infrastructure, use case, software requirements and in particular, the
MIKELANGELO vision built up a model that includes all redt views and opinions to

create a modular and extensible architecture. Special attention has been put to the modular
design, because the technology evolves so rapidly at the moment. This approach enables easy
replacement and optimization of individualngponents. In conjunction with the continuous
technology and architecture monitoring, statéhe-art software development can be
guaranteed and leads to a software package with industrial and academic relevance.

As detailed above, MIKELANGELO has alignéd technical development methods in order

to create an exploitable software product with significantly improved performance for
industries, small and medium sized companies as well as academia. As can be seen, this
strong business oriented approach dassonly help to create a recognized product, it even
helps to improve and refine the overall development cycles forahdlbe-art software.

Project No. 645402 MIKELANGELO Deliverable D2.19 Page3 of 49

Public Deliverable J
<« &RS\ULJKW % H Q HMIKELADGHLBD YrdfelctV MIKELANGELO

Table of Contents
A [11 o o [F o 1o o 1 UUPRPPPPPPPRRPPR 8
2 MIKELANGELO GOAIS....ccitiiiiiiiiiiiiiiei e es st 9
120 R € o - | £ 9
2.2 LINE Of @PPIrOACKHueiiiiiiiiiei i 10
I o [81T =T 0 1 T=] S SSSP 11
O AN (o] 11 (=X (1] = S 18
4.1 Overall arChitECIUIE..... ..o eeeeeeeeer e e 18
4.2 SKVM @rChiteCIUI......ccceeeeeeeeeeeeeeeeee e e e e e e e 19
4.2.1 SKVM Main SITUCIUIE.........cooiiiiiiiiiiiiiemme e s e 20
4.3 Guest operating system (OSv) architeCture..............ooevvvvvceiieeeeeeeiiinnn 21
4.3 1 The OSV KEIMEL....uuuuieiiii e eeeeeene e e 22
4.3.2 The Seastar lIDrary..........cooovviiiiiiiiie e e e 23
4.3.3 OSV IMAage PACKAGINGcccuuuuriiniiiieieieemiiiberbeir e e e e e e e e e e e ememe e e e e e e e e e e aaeaeens 23
44 Security MEChANISIMS.........oiiiiiiiiii e e eeemra e e e e e e e e e aaeeeeen 23
4.4.1 SCAM ArChILECIUIE.....ccie e e eee e eeee et 23
Y [1 (o] [T PP PP TPTRTN: 24
4.4.3 Profiling.....cccciiei e 24
o R \V 1 (o = 11 0] o SRRSO 24
4.45 Kernel MOAUIE........coooiiie e e e e e e e e e e e e e e e anees 25
4.5 Crosslayer OptimiSation..........cccoeiiiiiiiiiiiiieee e s 25
4.6 Integration into INfraStrUCIUIES...........ooviviiii e 25
2 0t R O [0 T U PUPPRPN 26
4.6.2 HP . et e e e e e e nnnr e a e 28
5 CONCIUSIONS. ...ttt e et eeee e e e e e e e e e e e e e e e ettt eeee e e e e e eeeeeeeeeeeeessstssmnneeeeeeeeessnnnnes 32
6 References and Applicable DOCUMENLS............cevvvuiuiiimmmeeerieeeeeeeiiiine e smmmeeeeeees 33
Appendix A tUse Case QUESHIONNAIIE..........cciiiiiiiiiiie e ceeeie e e e e e e e eaaaaas 34
1 General INfOrMAationL.........uuiiiii e e e 34
1.1 USE CASE UESCHPLON. ...ceiiiiiiiiiee e 34
1.2 CUurrent lIMitatioNS........ouuuuiiieiiiie s ceeee e eern e e e e e et e e e e e eeeaan ammnes 34
1.3 Expectations for the MIKELANGELO Stack.........ccccoovviiiiiiiieeeiii e 34
2 Technical INFOrMALION...........ovviiiiiiiie et e e e e e rernre s e e e e e e e e e e e e eeeeesannne s 34

Project No. 645402 MIKELANGELO Deliverable D2.19 Page4 of 49

Public Deliverable J
<« &RS\ULJKW % H Q HMIKELADNGHLBE YrdfectV MIKELANGELO

2.1 PhySIiCal HArAWAIE........eeiiiiiiiiiiii e e 35
2.2 SOWAIE.....uuiiiiiiiiii ittt ettt ettt e e e e e e e e e e e e e nren e 35
2.3 EXECULION ..ot e ettt ettt e e e e e e e e e e e st e e e e e e e e e as 37
P D - | - NPT UPPPPTTRR 37
T 1= Tor U 41§ S 38
Appendix B- Collected REQUITEMENLES..........uuiiiiiiiiiiiii ettt 39

Project No. 645402 MIKELANGELO Deliverable D2.19 Pageb of 49

Public Deliverable J
<« &RS\ULJKW % H Q HMIKELADNGHLBE YrdfectV MIKELANGELO

Table of Figures

Figure 1: OveralArchitecture 18
Figure 2: SKVM Architecture 20
Figure 3: OSv in relation to the work packages 22
Figure 4: SCAM modules 24
Figure 5: Scalable highvailability deployment of OpenStack 26
Figure 6: Complete cloud architecture of MIKELANGELO 28
Figure 7: HPC cluster testbed overview 29
Figure 8: HPC Architecture overview 30

Project No. 645402 MIKELANGELO Deliverable D2.19 Page6 of 49

file:///D:/MyDocuments/MIKELANGELO/Deliverables/D2.19.docx%23_Toc428810268

Public Deliverable J
<« &RS\ULJKW % H Q HMIKELADGHLBD YrdfelctV MIKELANGELO

Glossary

API = Application Programming Interface
CPU = Central Processing Unit

DPDK = Data Plandevelopment Kit

GUI = Graphical User Interface

HPDA = High Performance Data Analytics
HPC = High Performance Computing

I/0 = Input/ Output

KPI = Key Performance Indicators

KVM = Kernetbased Virtual Machine

LTS = Long-Term Support

MPI = Message Passing Interface

NFS = Network File System

NIC = Network InterConnect

(O = Operating System

POSIX = Portable Operating System Interface
QEMU = Quick Emulator

RDMA = Remote Direct Memory Access
SCAM = SideChannel Attack Monitoring/Migation
SMP = Symmetric MultiProcessing, allows aingle virtual machine to use
two or more processors simultaneously
ucC = Use Case

VM = Virtual Machine

WP = Work package

XML = Extensible Markup Language

Project No. 645402 MIKELANGELO Deliverable D2.19 Page7 of 49

Public Deliverable J
<« &RS\ULJKW % H Q HMIKELADGHLBD YrdfelctV MIKELANGELO

1 Introduction

This deliverable providesnaoverview of the target architecture in general as well as it
summarizes the progress achieved during the first eight months of the MIKELANGELO
project and its resulting conclusions. It represents the first deliverable that contains technical
informationof the project. Furthermore, it acts as a baseline for all technical work packages
(WPs), such as WP3, WP4, WP5 and WP6 and will be continuously updated in order to
reflect the current state of the art.

In order to understand the project and its visiohriaf description of the current limitations

of virtualisationtechnology are presented. Furthermore, the major goals are defined for a clear
understanding of the overall document structure. The process of the software development
follows the traditional \aterfall model: requirements collection and analysis, architecture
definition, component selection and implementation and finally, software validation.
However, product design, business orientation and standardization require a more agile
process in ordeto reflect the current technology state of the art. Therefore, agile methods
have been introduced, which lead to a number of iterations that guarantee stable and
technology oriented software development. This overall design and development process is
alsoreflected in the structure of the document, although the validation process will be detailed
within the deliverables of WP6.

The requirements with its different views act as the basis for the modular architecture. As the
MIKELANGELO project contains severadevelopment branches, the architecture is
comprised of various components: the hypervisor sKkVM, the guest operating system OSyv, the
security capabilities and the ability to monitor and orchestrate the systems lead to a complex
initial architecture with mmerous interdependencies. All building blocks demand different
developments with different baselines and complexity in order to design and implement the
required functionality and thus, are highlighted and described in detail in this document.
Furthermore initial mechanisms to integrate the software stack into traditional Cloud and
HPC infrastructures is presented reaching the final goal of the MIKELANGELO project, a
high performing cloudike software stack.

All this information forms the structure ofi¢ document. Within section 2, the initial goals

and the approach are described. Section 3 highlights the requirements, the prioritization and
the categories. In section 4, the overarching architecture building on the requirements is
detailed presenting ¢hmodular design. Finally, section 6 concludes the whole document.

Project No. 645402 MIKELANGELO Deliverable D2.19 Pages of 49

Public Deliverable J
<« &RS\ULJKW % H Q HMIKELADGHLBD YrdfelctV MIKELANGELO

2 MIKELANGELO Goals

$V WKLV GHOLYHAKIHEOIHUVW O,.(/$1*(/2 DUFKLWHFWXUH" UH
project document that includes technical and architectural information, the ggoeislof
MIKELANGELO will be highlighted at first in order to understand the intended direction of

the project in detail. In the following, the MIKELANGELO approach will be described.

2.1 Goals

The goal of MIKELANGELDO is to develop an approach and the accoympg software that
will disrupt the traditional HPC and Private Cloud fields. The focus on the fields of security,
flexibility and performance is presented in the following document.

Currently, the secalled hypervisors are used to divide a physical nate one ormore

virtual nodes (virtual machinexVMs), which leads to sharing of resources for an efficient
overall usage of the physical infrastructure. However, this mechanism introduces a
management layer, which transfers the data between the vimadiines and the physical
infrastructure and maps the requests and events of the different systems. So, this complex
management layer enables sharing of resources, but at the same time disables high
performance access to the physical sub systems dues traitsfer mechanisms. This
circumstance introduces bottlenecks for all virtualized environments in regards to 1/O,
memory and CPU. In particular, one limiting factor is currently the support of specialized
network interfaces such as Infiniband and itduded protocol: remote direct memory access
(RDMA). Although there are hypervisors available like commercial versions of Xen that
already support this kind of functionality, the integration in the open source hypervisor KVM

is desired asgirtualisationusing kernel modules in state of the art operating systems provides
more flexibility in terms of usability and system updates. Whilst the performance of the
memory and processing systems within the virtual machines and the physical nodes underlie a
continuaus evolution process, the system storage Heackof the hypervisors falls behind and

lacks the required latency and bandwidth. Especially at this working point, new mechanisms
are mandatory in order to exchange data between the VMs and the physicalitfresin a

more efficient manner. Finally, fulNirtualisation of operating systems results in a lower
overall performance due to doubling (or even more, depending on the amount of virtual
resources per node) of operating system components. A lightttwrigst operating system is
required, which will improve the communication with the underlying host operation system
and the bare metal hardware. As a result, shorter booting times and more efficient
communication between the hypervisor and the virtuaratpg system will enable higher
performance.

Within the project, those major issues will be addressed in order to provide an advanced
technology that enables High Performance Computing (HPC) with all its deviations, like High
Performance Data AnalyticéiPDA) and many more in the Cloud, and even on commaodity
hardware to a certain extent limited by the hardweapabilities However, production
systems require not only high performance and reliability, they need to bsafailand
secure. As a consequend®KELANGELO will not only target performance issues, but will

also introduce sophisticated security mechanisms in its architecture and the following
developments. These aforementioned goals demand the collection of an appropriate
requirements list, whiclinas been initially captured throughout the first six months of the
project. Nevertheless, the ambitious goals of MIKELANGELO require a continuous

Project No. 645402 MIKELANGELO Deliverable D2.19 Page9 of 49

Public Deliverable J
<« &RS\ULJKW % H Q HMIKELADGHLBD YrdfelctV MIKELANGELO

technology and architecture analysis so that this document acts as a baseline for all the
SURMHFW 1 YitsGht asiacBnSdetience, will be continuously updated.

2.2 Line of Approach

The results of MIKELANGELO will be validated by four different types of applications,
available to the project as independent-cage. Pure HPC capabilities will be introdutsd

the simulation of cancellous bones on the basis of the message passing interface (MPI) and
the simulation of turbulence at airplane winglets using OpenFOARr Cloud usage
requirements, the simulation of a Cloud Bursting case study, implementezkerwuted via
Seastdr and a Big Data intensive application will be targeted. Especially the Big Data
intensive application will lead to support various kinds of frameworks, such as Hamtoop
Spark and will therefore result in highly interesting statetisé art HPDA requirements as

well. These four use cases form the basis for the initial modular design of the architecture,
allowing easy reconfiguration or even replacement of components and thus functionality.

As already detailed, the major performancélboecks for the KVMvirtualisationstack will

be addressed in MIKELANGELO. Nevertheless, an innovative and exploitable product
design requires more than just optimization, it also needs to improve the communication
between all involved software componght WKH VR FDOOHG 3SFURVYV OHYHO R
significantly improve the interaction between the highly improved KVM hypervisor, the so
called sKVM, and OSY the operating system for the cloud. In addition, it will allow standard
operation for alkthe other welknown operating systems. In other wordistualisationusing

the operating system OSv will be optimized by dedicated interfaces. Other widely used
operating systems will still gain from individual improvements in components such as sKVM,
OpenStack, monitoring and instrumentation, but will not exhibit the full power of
performance and flexibility improvements provided by this ctagsr optimisations.

In general, the architecture of MIKELANGELO relies on requirements, derived from the
project vision, from the use cases and from the infrastructure providers. This process ensures
that different views are reflected in an appropriate manner and leads to a broad understanding
of required functionality. So, the presented approach ensures upthleere$ults by manifold
stakeholders and finally enables a production ready solution, which can be used in Clouds and
High Performance Computing infrastructures.

! http://www.openfoam.com/

2 http://www.seastaproject.org/
3 https://hadoop.apache.org/

4 http://spark.apache.org/

> http://osv.io/

Project No. 645402 MIKELANGELO Deliverable D2.19 Pagel0of 49

Public Deliverable J
<« &RS\ULJKW % H Q HMIKELADGHLBD YrdfelctV MIKELANGELO

3 Requirements

During the first six months of the project, requirements have been gathenedalirahe

project partners. In order to support all use cases and create the building blocks of
MIKELANGELO, the requirements are directly derived from their intended Use Cases (UCs).
However, to provide the project with a comprehensive view on all kifdscbnologies,
including system operation, additional requirements have been captured to guarantee uptake
of the final software product and enable efficient system operation. It is important to mention
that the requirements collection is a continuous gssdhat involves the development cycles

of all the other work packages. The agile development process therefore leads to refinements,
extensions or even new requirements throughout all cycles of the project. Thus, the
requirements document will be updated a regular basis with new or altered (business)
requirements of the four use cases or as a consequence of new developments in the field of
virtualisation

Initially, the requirements of the use cases have been gathered via use case questionnaires
[Appendix A tUse Case Questionndirdhis procesdulfils two different goals: on the one

hand, the use cases can be understood in detail and on theaditstrset of requirements can

be generated, reflecting the requested (heyel) functionality. As a result, four sets of
requirements have been compiled into one single document. In addition, this document has
been enriched by infrastructure requiests and requests of the overall project vision.

After collecting this information, refinements of the coagsained requirements have been
conducted to obtain a precise and -saiplanatory list that can be used to create a
development plan. For this ddepment plan, a prioritization of the more than 100 initial
requirements was mandatory. Therefore, a weighted approach involving all partners and the
technical leadership has been taken. The following priority levels were available for all
requirements &wing all parhers to express their interest:

1 - High priority
A requirement is mandatory

2 - Low priority
A requirement is nice to have but not mandatory from the perspective of a
partner

3 - Indifference
Partner does not need the requiremeot do they oppose to having it
implemented

4 - Weak reject
A requirement could be implemented but advising against

S - Strong reject
Partner expresses that a requirement is not inviiie the project, not useful
or reasonable or provides an additional claafion

Priorities 1, 2, 4 and 5 may be aligned with the widely used MoSCoW (Must|di@auld,
Will not) analysis. However, the deliberate decisions to introduce priority 3 (indifference) was
made to facilitate fair prioritisation. For example, one gsse provider might choose

Project No. 645402 MIKELANGELO Deliverable D2.19 Pagell of 49

Public Deliverable J
<« &RS\ULJKW % H Q HMIKELADGHLBD YrdfelctV MIKELANGELO

3&RXOG” RU HYHQ 3:LOO QRW’" IRU UHTXLUHPHQWY RI WKH |
but in our case a priority of 3 guaranteed this did not occur.

As a result, priorities for all requirements have been captured, includig&@WU RMHFW IV YL\
the infrastructure and use case providers as well as all partners in general. Prioritisation was
done automatically using average priority with an additional condition that if two or more
partners marked a requirement as mandaitsyoverall priority was also mandatory

Following the automatic prioritisation, the consortium refined the list once more to make it
coherent, meaningful and also consider interdependencies between requirémalys.all
requirements have been annotatethwategories in order to create a meaningful and realistic
development plan for year one of the project that supports all the requested functionality.

For year two and three of the project, the prioritization list is already available. However, the
agile development process and the continuous architecture and technology monitoring
demand flexibility for all introduced mechanisms. Therefore, the development plans for later
phases of the project will be createdtime, involving the technical coordinatona all
project partners.

In general there are ten different categories for requiremégpehdix B - Collected
Requirements

App
Applicationspecific requirements derived from the Use Cases

Guest virtio-rdma
Requirements for the GuessS (VMSs) in regards to virtual I/O via RDMA

Hypervisor
Hypervisor specific requirements

Hypervisor virtio-blk/scsi
Requirements for the Hypervisor's virtual B®ck and SCSI devices

Hypervisor virtio-net
Requirements for the Hypervisor's virtual 1/0 via network

Hypervisor virtual switch
Requirements for the Hypervisor's virtual switch capabilities

Infrastructure
Requirements required to be considered for futuegration into HPC environments

Monitoring
All monitoring related requirements, concerning Wigole stack (guest & hypervisor
performance, hardware health, services and applications state, GUI for observation)

" OSv
All requirements for virtual guesiperating system OSv not covered by the above
ones

Security
Requirements addressing security concerns in a virtualized environment.

Project No. 645402 MIKELANGELO Deliverable D2.19 Pagel2 of 49

Public Deliverable J
<« &RS\ULJKW % H Q HMIKELADGHLBD YrdfelctV MIKELANGELO

41 out of 139 initially identified requirements have been agreed on by all partners, to be the
focus of the first year ofhe project. The primary motivation for choosing this subset of
requirements was to define ambitious goal of delivering the first version of the
MIKELANGELO stack by the end of first year already demonstrating key ideas of the
project. These requirementseaelaborated in detail below and ordered by the previously
mentioned categories. The whole list of requirements can be found in the annex, including
also those remaining that will be refined and reconsidered in later stages of the project

1. App

ID Requirement Description

#102 | Integrate NFS Client in OSv | For parallel HPC applications it's usually esser
to have a common fileystem shared amongst
compute nodes

#39 | Big Data stack running in OY sKVM and OSv need to be able tor@f6 L J 'L
and skVM software stacks to cover Use Case needs

#37 | OpenFOAM running in OS{sKVM and OSv need to be able to 1
and sKVM OpenFOAM applications

2. Guest virtio-rdma

ID Requirement Description

#70 | DPDK integration on Guest | Support inside the virtualizetlost for DPDK's
host driver

#71 |vhostnet integration witl Guest's virtuavhostnet adaptermust be able t
virtual switch on host connect to a virtual switch

#75 | Integration of RDMA| Ubuntu Guest must be able to make oSRDMA
components with Ubunt
Guest

#73 | Integration of RDMA| OSv Guest must be able to make use of RDMA
components with OSv guest

Project No. 645402 MIKELANGELO Deliverable D2.19 Pagel3of 49

<« &RS\ULJKW

3. Hypervisor

Public Deliverable

% H Q MIKELADGELBD Prdfect V MIKELANGELOJ

ID Requirement Description

#03 | Hypervisor command lin{f QEMU/KVM command line API to instantiate al
API manage VMs through sKVM(?)

#07 | Multi VMs shared memory Hypervisor support / optimization for multi VM d
communication a single node, transferring data in memory

#14 | Hypervisor APl backward| Compatibility between sKVM's and KVM
compatibility interface

#08 | Hypervisor support fo| Hypervisor should be able to run CentOS Guest
CentOS guest

#10 | Hypervisor support fo| Hypervisor should be able to run Ubuntu Guest
Ubuntu guest

#09 | Hypervisor support for OS| Hypervisor should be able to run OSv Guest
guest

4. Hypervisor virtio-blk/scsi

ID Requirement Description

#64 | Hypervisor physical blocl Hypervisor should be able to run guest OS wit
device support vhostblk device backed by SSD, Hard discs :

other such devices

#65 | Hypervisor virtual blocK vhostblk/scsi mustwork with virtual block devices
device support such as RAMdisc

#67 | Virtio-scsi support in Ubunt| vhostblk/scsi must work with Ubuntu Guest
guest

Project No. 645402

MIKELANGELO Deliverable D2.19

Pagel4 of 49

<« &RS\ULJKW

Public Deliverable

% H Q MIKELADGELBD Prdfect V MIKELANGELOJ

S. Hypervisor virtio-net
ID Requirement Description
#55 | Hypervisor virtual networl Vhostnet should be abléo connect to a virtug
connectivity switch
#56 | Hypervisor physical networ| Vhostnet should be able to connect directly to
connectivity physical NIC (through macvtap)
#58 | Hypervisor Ubuntu gues| Hypervisor should be able to run Ubuntu guest v
support avirtio-net virtual NIC
6. Hypervisor virtual switch
ID Requirement Description
#89 | Vhost support in Hypervisor| support for vhostiser
user space
#55 | DPDK Poll Mode Driverl support for DPDK Poll Mode Driver for RDMA
support on Host
7. Infrastructure
ID Requirement Description
#18 | Integration of the modifie| Hypervisor must be packaged with OpenSt
hypervisor with OpenStack | installation scriptallowing end users to seamles
install and/or use both KVM and the improv
version skVM
#15 | Hypervisor integration for| Change cluster setup to be able to use (differ
HPC hypervisor. Integration into Torqgy
(=ResourceManager+Scheduler) for starting H
batch jobs inside VMs

Project No. 645402

MIKELANGELO Deliverable D2.19

Pagel5 of 49

<« &RS\ULJKW

Public Deliverable

% H Q MIKELADGELBD Prdfect V MIKELANGELOJ

#101

Libvirt integration for sKVM

Update the libvirt XML configuration schen
supporting components of the modified hypervisc

8. Monitoring

ID Requirement Description
#42 | Capture performance metri{ Hypervisor needs to expose OSv metrics to
of guest OS+OSv monitored by the monitoring system
#41 | Capture performance metri{ Hypervisor needs to expose sKVM metrics to
of host Hypervisor sKVM monitored by the monitoring system
#40 | Hardware Monitoring Monitoring system needs to be able to cap
performance metrics of physical hardware
#45 | Monitoring GUI Monitoring systen needs a GUI to allow a
captured metrics to be queried and explored
#43 | Services/Applications Monitoring system needs to be able to capture
Monitoring case specific metrics
#02 | Hypervisor Monitoring Monitoring system needs to be able to cap
hypervisor metrics
9. OSv
ID Requirement Description
#26 | RDMA API passthrough Support for OSv Support for Infiniband hardwg
(virtual interfaces)
#30 | RDMA core driver suppor| Support for RDMA (core driver dhfiniband)
for OSv
#20 | OSv support environmell Support for environment variables inside OSv
variables

Project No. 645402

MIKELANGELO Deliverable D2.19

Pagel6 of 49

<« &RS\ULJKW

Public Deliverable

% H Q MIKELADGELBD Prdfect V MIKELANGELOJ

#23 |OSv support / APl fol OSv must be able to provide monitoring data

monitoring the instances instances through an API

#29 | OSv support multthreading | OSv needs to syort multithreading

#35 | Extended support fg Support for functions from Linux/libc need to

functions from Linux/libc supported
10. Security
ID Requirement Description
#96 | Intrusion detection ol Hypervisor mechanism to detect mitigate cross
Hypervisor level VM information extraction via side channels

#961 | Prime&Probe metattack| Implement a prime&probe attack in user space

outside of KVM KVM)

#962 | Prime&Probe metattack| Implement a prime&probe attack in user space

inside of KVM VM over KVM)

#963 | TargetVM implementation | Implement a target VM running SSL authenticat
which can then be attacked to validate the upcor|
security mechanisms to prevent exploitation
valuable user data

#964 | Collect timing and counteg Identify the available counters and register 1

informationfrom cache contain relevant information for performing timi
based cache attacks

Project No. 645402

MIKELANGELO Deliverable D2.19

Pagel7 of 49

Public Deliverable q
<« &RS\ULJKW % H Q HMIKELADNGHLBE YrdfectV MIKELANGELO

4 Architecture

This chapter is split into subsections to allow for better understanding of the individual
components. Afirst the overall architecture is presented to explain how all the involved
components interact with each other. In the following subsection sKkVM and €¥YM is

the new improved hypervisor and OSv (the light weight guest operating sysaeenjurther
explained. The third subsection deals with the security concerns involved presenting an
overview over the possible attacks and how these can be addressed to prevent them.

The last part elaborates how we will integrate MIKELANGELO into a Cloud or an HPC
envronment. The approaches for the integration into Cloud and HPC infrastructure are further
divided into two separate subsection, explaining the unique aspects, limitations and
advantages.

4.1 Overall Architecture

The global architecture of MIKELANGELO is iahded to be as modular as possible and
easily expandable. In addition to the modular approach MIKELANGELO will focus on-cross
level optimizations to be as flexible as possible concerning application execution. Flexible in
terms of actual HPC hardware emviment is not relevant as it is abstracted by an hypervisor.
Further, to improve the overall performance of applications running inside VMs,
corresponding modifications will be applied to both sKkVM and OSv. Both technologies will
be interchangeable witheir counterpart, sKkVM with KVM and OSv with any Linux guest.
So OSv will also remain fully compatible with KVM, and sKVM runs any other guest
operating systems KVM is able to. However, only when both are combined they will provide
the desirable benefits ifull extent: less CPWwverhead, improved /O as well as stronger
security. These crodayer optimisation will also serve as a demonstrator for other users on
how dedicated solutions may be used to achieve highest possible improvements.

Figure 1: Overall Architecture

As shown inFigurel the hypervisor (s)KVM runs on a host system which manages access to
the physical hardware. On top of the hypervisor runs at least one guest operating system like
i.e. Ubuntu (Linux) or O%

Project No. 645402 MIKELANGELO Deliverable D2.19 Pagel8of 49

Public Deliverable J
<« &RS\ULJKW % H Q HMIKELADGHLBD YrdfelctV MIKELANGELO

4.2 The sKVM Architecture

The sKVM architecture is aimed at enabling HPC (Higérformance Computing) and big
data providers to virtualize their workloads. This abstraction of the actual hardware provides
the benefit of a highly flexible design in terntd compile once run everywhere. To
accomplish this challenging goal we are developing an optimized H&8&d hypervisor,
sKVM, with several improvements to both 1/0O performance and security.

The I/O improvements will be comprised of two independent emmaents. The first will
address the paravirtual model in KVM which is the most prevalent technique today for
providing virtual /O devices to VM guests. sKVM targets on both, traditional clouds built
with commodity hardware as well as highly specializeddWware. Cloud infrastructures
supporting fast Network InteConnects (NICs) like Infiniband and protocols for remote
memory access like RDMA, will benefit from the second-i@rovement of sKkVM: a
lightweight RDMA virtualisationlayer, using an kguest vitio-rdma frontend virtual driver.

It provides different network interfaces for the guest application and sdrive
communication over Infiniand network or within the same host using shared memory. For
clouds using commodity hardware the sKVM stack rsffemarkable speadp in comparison

to KVM by using the 10cm component. IOcm (/O core manager) provides dynamic
utilization of cores efficiently. For the workload scheduling the behaviour of the particular
workload is considered, i.e. compute intensige MO intensive loads. sKkVM also covers
securityenhancements regards to leakage of private data by preventing cache side channel
attacks with the help of SCAM, a side channel attack monitor.

Project No. 645402 MIKELANGELO Deliverable D2.19 Pagel9 of 49

Public Deliverable q
<« &RS\ULJKW % H Q HMIKELADGHLB YPrdfelctV MIKELANGELO

4.2.1 Main Structure of skKVM

App

Frontend driver

virtio-blk virtio-net TX RX e
| _ivshmem | virtrio-net
1
ROMA

¥
| ivshmem | | vhost-user |\
~ —
Meniory

virtual switch RDMA ma:iwmg
DPDK Controller !

rNIC PMD

RDMA Memory Regions e e e

-

kernel

vhost-blk vhost-net

\ CDCD «@=»

[DISK] [NIC] [RDMANIC .____} _____

Figure 2: sKVM Architecture

Figure 2 illustrates the sKVM architecture design of all three major components. sKVM is
based on KVM, which is implemented as a Linux kernel module that extends the kernel with
hypervisor capabilities, and is driven by a QEMU user psacéstio provides an abstraction

for a set of common (emulated) devices in a paravisedlhypervisor. The guest operating
system implements virtio drivers which are called, for example viitoand virtieblk. The
diagram also presents @mew virtio dive, virtio-rdma that will be implemented within
MIKELANGELO to support high speed communication using RDMA interconnects.

Linux/KVM implements an irkernel implementation for virtio (paravirtual) devices called
vhost, currently supporting two paravirtudevice types? network (vhostnet) and block
device (vhosblock). I0cm is based on KVM vhasts illustrated in Figur2.

Virtio-rdma communicates with vhesser,shown on the right of Figure 2.hdstuser is a

new implementation based on the kernkbst, and it has been implemented in the latest
versions of QEMU, Open VSwitch and DPDK. It works in the user space and uses kernel
vhost to initialize the necessary resources that are shared between the processes in the user
space.

For further details imegards to sKVM, e.g. idepth description of the architecture of each
component, the challenges addressed by IOcm, vitita and attackcenarios, please refer

Project No. 645402 MIKELANGELO Deliverable D2.19 Page20of 49

Public Deliverable J
<« &RS\ULJKW % H Q HMIKELADGHLBD YrdfelctV MIKELANGELO

to the dedicated deliverable D2.13, The first SKVM hypervisor architecture. The deliverable
also provides preliminary benchmarks that will be used for evaluating sKkVM as a whole.

4.3 Guest Operating System (OSv) Architecture

MIKELANGELO runs an application on many virtual machines (VMs), also known as
3JXHVWV " Rl WKH K\SHUY LV Raling(dyfehn ®0uQtheHapplicabo. RVBH U
on the cloud traditionally run the same operating systems that were used on physical
machines, such as Linux, Windows, or *BSD. But the features that made these operating
systems desirable on physical machines, lasing their relevance: Examples include a
familiar singlemachine administration interface, the support of muser and multiple
applications, and the support for a large selection of hardware. On the other side, different
features are important for MBRLANGELO: The VM's operating system needs to be fast,
small, and easto administer at large scale.

OSv is a new operating system designed specifically for running a single application on a
VM. OSv is limited to a single application because the hypenrgbkeady supports isolation
between VMs, so we believe an additional layer of isolation inside a VM is redundant and
hurts performance. As a result, OSv does not support processes with separate address spaces
(for example, the fork() call is not supportedut does fully support multhreaded
applications on mukcore VMs.

26YV GHVLJQ VWHPV IURP WZR PDLQ JRDOV

1. Run existing applications, faster.
The goal here is to take unmodified (or only slightly modified) Linux executables, and
have them start fastand run fasteon OSv than they did on Linux.

2. Provide new APIs for writing even faster applications.
7TRGD\YV /LQX[$3,V 326,; VIVWHP FDOOV VRFNHW $3,
of Unix legacy, and some aspects of it are inherently inefficient. OSwmotan
dramatically improve the performance of applications which use those APIs. So our
second goal is to propose new APIs which will offer applications, that are rewritten to
use them, dramatically better performance than unmodified Linux applications.

In this section we will provide a higlevel description of the architecture of the guest
operating system and components related to it based on OSv. Following diagram shows the
main components of OSv. Components marked with orangerdedwe been identifieth be

either extended/updated or implemented within MIKELANGELO project.

Project No. 645402 MIKELANGELO Deliverable D2.19 Page21 of 49

Public Deliverable J
<« &RS\ULJKW % H Q HMIKELADNGHLBE YrdfectV MIKELANGELO

WP5 | WP4 OSv Image

OSv app
(Bones, Cassandra, Spark. OpenFOAM. ...}

Modules (optionally included into image)

=

Server

0Sv

ELF
linker

Memary
mgmt

; o] =]

i

i
i
i
|
i
i
: VFS

OpenStack Glance |

Image Repository) E— Capstan g — — — - 4 t

i
i
i

\ TCP/IP FFs
Remote Image Local Image
Repository Repaositary

Thread
sched

Loader

NFS
Client

virtio-
blk

virtio-
net

device
driver

‘ DPDK* ‘

Part of virlio-rdma
f .
' L package. Specifics
' WP3 provided in other places

— Direct device

——— assignment (SR-

10V?). Not used
ATM.

blk
davice

net

davice device

device

HW

Figure 3: OSv in relation to the work packages

4.3.1 The OSv Kernel

The main focus for this new Kernel [8] was to build it as lightweight as possible, tteeitefo

is optimised for use in a virtual environment. Genraipose operating systems need to
work on thousands of different hardware devices, and thus have millions of lines of driver
code. But OSv only needs to implement drivers for the small numbg@irtfal) hardware
presented by the (s)KVM hypervisor used in MIKELANGELO. This consists only of a
minimal set of traditional PC hardware.

OSv does not support processes, but offers complete support for symmétriprocessing

(SMP) VMs, and for threads, as almost all modern applications use them. Our thread
scheduler multiplexes N threads on top of M CPUs (N may be much higher than M), and
guarantees fairness (competing threads get equal share of the CPU) and load balancing.
Thread priorities, reaime threads, and other usgsible features of the Linux scheduler are

also supported, but the implementation is quite different from that of Linux. One of the
consequences of our simpler and more efficient scheduler implementatibat in OSv,
FRQWH[W VZLWFKHYV DUH VLJQLILFDQWO\ IDVWHU WKDQ L
depending on the regarded scenario.

Additionally other parts, like the memory management or the thread scheduler, are also
optimized to get the maxiom performance possible form OSv itself.

Project No. 645402 MIKELANGELO Deliverable D2.19 Page22 of 49

Public Deliverable J
<« &RS\ULJKW % H Q HMIKELADGHLBD YrdfelctV MIKELANGELO

4.3.2 The Seastar Library

Seastar is a newly developed C++14dily, which can be used either in OSv or in Linux.
Seastar is not part of the kernel, but is nevertheless an integral part of the MIKELANGELO
guest operatig system, needed by new applications that choose to use it to go beyond the
improvement OSv can offer to unmodified applications. It provides a novel application
programming interface (API) and also a different programmpayadigm allowing
applications unning on modern mangore machines a lock free and shaothing design

which uses less overhead than classical threads.

4.3.3 OSv Image Packaging

There are different ways of compiling OSv and adding software into the image. One of them
is to package it with Capstan which is similarly convenient as building a Docker container but
creating full virtual machine images. Capstan also allows you to uglEdmages you
compose to a site, to download yw@mposed images, and also to run these images.

At this point in time there are already ~70 different applications ready for use with OSv. A
multitude of runtime environments are already supported allgwimost apps to run in OSv
without too many modifications. The OSv applications Git repository provides recipes for
building application images from source code orgrmpiled binaries. One of the focuses of

the guest operating system work within MIKELANGE will be to improve the packaging
workflow allowing (nontechnical) users to compose virtual images from small and already
available building blocks, such as the kernel itself, application packages (for example, the
Bones app, the OpenFOAM framework,.gtdata packages (small because large datasets are
typically deployed to some sort of shared storage) and additional configurations. Beyond
existing packages users will be allowed to package their components manually, typically be
recompiling software p&ages.

4.4 Security Mechanisms

4.4.1 SCAM Architecture

The following diagram provides a higével view of our proposed architecture for SCAM

the sKVM SideChannel Attack Monitoring/Mitigation module. The execution of this module
will be controlled by a switchi sKVM, so that sKVM can decide at runtime whether SCAM
operates, thus improving security and reducing performance, or not. The role of SCAM is to
provide a varied granularity of monitoring, profiling, and mitigation capabilities, in order to
identify VMs that are attempting to exert information fromlooated VMs via cache side
channelsThe main modules of SCAM are the following:

" Monitoring module

" Profiling module
" Mitigation module

Kernel module

Project No. 645402 MIKELANGELO Deliverable D2.19 Page23of 49

Public Deliverable J
<« &RS\ULJKW % H Q HMIKELADNGHLBE YrdfectV MIKELANGELO

= e e

4 ,SCAM
> el e \ ﬁ

— monitor P g mitigate
Ll

kernel module jj

/\\
/ - / \ explicit
——--o
o
-
; ©
2
o]
o
CPU cache physical memory virtual memory

Figure4: SCAM modules

4.4.2 Monitoring

The goal of the monitoring module is to collect data on the cache accesses of the virtual
machines (VMs) running on the host. Since SCAM has no prior information as to the identity
of a potential attacking VM, the role of this module is tdlert information on the cache
activity of the VMs running on the host, in an attempt to extract traces of VM cache activities
that can later be profiled. The information gathered by the monitoring module is passed on to
the profiling module, in order testimate whether the activity of the monitored VM is deemed
benign or hostile.

4.4.3 Profiling

The role of the profiling module is @nalysethe pattern of cache accesses of each VM and
assign a score that represents the risk that a VM is conducting abeselesidechannel

attack. The input of the profiling module is the data that the monitoring module collects on
each VM. The profiling module may trigger the operation of the mitigation module. The basis
for profiling VMs is a common characteristic of allreently known cachdased sidehannel

attacks, namely priming and probing specific casbis persistently. The profiling module
characterizes the risk posed by a VM by the degree of similarity between the cache accesses
of the VM and that of a generictatk.

4.4.4 Mitigation

The objective of the mitigation module is to reduce the effectiveness of-baskd side

channel attacks and prevent them completely where possible. The module takes action based
on input from three possible sources. The profiling modoge initialize mitigation action
against a VM based on the risk score that is assigned to that VM. In addition, user

Project No. 645402 MIKELANGELO Deliverable D2.19 Page24 of 49

Public Deliverable J
<« &RS\ULJKW % H Q HMIKELADGHLBD YrdfelctV MIKELANGELO

applications may request protection for specific pages in memory even without any indication
that there are malicious VMs running on tlaeng hardware platform. This second option is a
form of crosslayer interaction that significantly reduces the overhead incurred compared to
mitigating sidechannel attacks aimed at data extraction from arbitrary memory locations.
Finally, the mitigation mdule may be configured to perform some mitigation operations on
the whole system regardless of the presence of malicious VMs.

4.4.5 Kernel Module

The kernel module of SCAM provides the kernel services that the other modules require.
These include access to timeand counters, read and write permissions to the page table,
manipulation of VM scheduling, VM memory assignment and VM core assignment.

4.5 Cross -layer Optimisation

Previous sections presented individual components of the MIKELANGELO software stack,
namely the /O optimised sKVM, lightweight guest operating system OSv and advanced
security module preventing hostile VMs to collect information from others. Each of these
components provides significant improvements over existing solutions for running
applications in virtual environments. Direct integration of these components into cloud and
HPC management frameworks further excels the capabilities thereof.

These improvemds will benefit all users of MIKELANGELGased infrastructures making

it a form of a general purpose solution. However, one of the goals of MIKELANGELO
project is to go well beyond this providing special interfaces between components facilitating
communi@tion between them. This will further steer the performance and security
optimisations of the whole stack. An example of such interface is between security
component of sKVM and OSv or even the application itself. The latter is allowed to mark
specific regons of code that either contain sensitive information or manipulate such
information triggering the SCAM component to perform monitoring and mitigation, if
necessary. Similarly, the application or OSv could notify the hypervisor of the expected
change in/O request rate allowing sKkVM to accommodate cores allocated for I/O operations.
sKVM could alternatively notify OSv whenever number of I/O cores changes.

Potential crosfayer optimisations will be analysed in full detail in the next stages of the
MIKELA NGELO project. The interface and communication between components will be
based on standard communication protocols used in contektulisation This will allow

other vendors to use these interfaces to activate additional features of MIKELANGELO
compnents.

4.6 Integration into Infrastructures

This section describes the integration of the MIKELANGELO stack into infrastructures for
Cloud and HPC computing. These two types of infrastructure are the main targets of
MIKELANGELO as they can benefit most frormproved I/O performance and security of
virtual machines. First, we describe the integration of the new MIKELANGELO components
with OpenStack as a widespread solution for cloud computing. Second, we describe the
integration of most of the components ibktch scheduler systems for the application in HPC
clusters.

Project No. 645402 MIKELANGELO Deliverable D2.19 Page25 of 49

Public Deliverable J
<« &RS\ULJKW % H Q HMIKELADNGHLBE YrdfectV MIKELANGELO

4.6.1 Clouds

This section describes the integration of the MIKELANGELO architecture into the GWDG
cloud infrastructures in general and into the GWDG cloud infrastructure as a specific
example. First w describe the cloud architecture, which is based on a produetdy
OpensStack installation. Second, we describe the specific integration of MIKELANGELO
components into the cloud architecture.

The deployment to be used aerencearchtecture of a loud is shown in gure 5. This
architecture is based on a scalable faghilability deployment of OpenStack. In the
MIKELANGELO project, the cloud systems are provided by GWDG. There are two types of
deployments, which are connected and offered. The dinge is a full cloud deployment,
which will be used to test MIKELANGELO in a production setting. The second deployment
is a testbed with fewer nodes used to run integration tests via eusintegration with
Jenkins.

Nodes

Controller Bare Metal

Controllerl

Memcached

RabbitMQ

Loadbalancer 1

Loadbalancer 2

‘ HAProxy ‘ ‘ Keepalived ‘ ‘ HAProxy ‘
I

Controller2

Memcached

RabbitMQ

Keystone

Cinder

Glance APl

MNova APl

Glance
Registry

MariaDB

Galeral
Network 1

agents

MariaDB
Galera2

Keystone

Cinder

Network
agents
Cinder2
Volume

Glance API

Nova AFI

Glance

Mova Conductor
Scheduler

e

uler

ot Volume
Neutron
Server

Registry cL

Neutron

Horizon Server

Harizon

Spofl

Compute Nodes

Single node
Active [Active
Active [Passive

Heat APl Heat AP

Mongol

Nova
Compute

L3 agent
(dvr)

Nova
Compute

L3 agent
(dvr)

Nova
Compute

L3 agent
(dvr)

Figure 5: Scalable highavailability deployment of OpenStack

The full deployment runs on N nodes as compute nodes and with three controller nodes. Each
compute node is equipped with more than 128GB of memory and more than 1TB of local
storage. The controller des have fewer resources with less memory. All nodes are
connected by a dudihk 10 GBIt data centre Ethernet system. The test bed for Y1 runs on
three compute nodes and one controller node. The compute nodes have 128GB of memory
1TB of local storage, analso duallink datacentre Ethernet.

Project No. 645402 MIKELANGELOQ Deliverable D2.19

Page26 of 49

Public Deliverable J
<« &RS\ULJKW % H Q HMIKELADGHLBD YrdfelctV MIKELANGELO

The cloud integration regards the integration of MIKELANGELO components with a
mainstream middleware for cloud computing. Our choice is OpenStack due to its widespread
use, level of maturity, and since it is alreadyse at GWDG.

The software setup for the cloud is illustrated in Figure 5. The two controller nodes run on
dedicated hosts. The controller hosts all of the essential services, which are run in Linux
containers. The two controller nodes are completelyamad and equipped with HAProxy for

load balancing. Most of the services in the controller nodes can be used iraatitreenode.

Only the HAProxy itself and MongoDB are run in actpassive mode. Finally, caching and
networking agents are specific teethontroller nodes and thus their state is not mirrored. The
compute nodes run the Nova component of OpenStack with a layer 3 networking agent. The
Nova services are installed directly on the hosts to reduce any overhead. The whole
deployment is automatdxy using configuration management with Pudpéi.

The cloud integration poses several requirements to MIKELANGELO components and needs
to fulfil other requirements to ease the integration with big data and HPC services. The
requirements posed by the stbintegration can be summarised as the need to keep interfaces
of underlying components backwards compatible as much as possible. Three of the most
important requirements in this context refer to sKVM and OSv. First, SKVM should be able to
run in an Opentack environment with as few changes to libvirt, Nova and other components
as possible. Changes to the whole system should be contained to the lower layers of the
architecture. Second, sKkVM should be able to run mainstream operating systems as guest OS.
In specific, Ubuntu, CentOS and similar OSs need to be supported. Third, OSv needs to be
able to run smoothly in OpenStack on top of sKVM and KVM.

Figure6 shows the complete cloud architecture in MIKELANGELO. The main changes to a
standard OpenStaakeployment regard the extensions to KVM, the use of OSv images and
application management with OSv, and the integrated monitoring and instrumentation
framework

Project No. 645402 MIKELANGELO Deliverable D2.19 Page27 of 49

Public Deliverable J
<« &RS\ULJKW % H Q HMIKELADGHLBD YrdfelctV MIKELANGELO

OpenStack Sahara
(BigData)

OpenStack Heat
| (orchestration) | | OSv |

;

.

\/

Openstack Compute Service OpenStack Image Service Applications management
| Nova Compute Glance API I API
: A
| libvirt (Qemu driver) - r
Image Image CLI
: Repository Repository
KVM Hypervisor
(o 0sv 0sv
WM VM WM
Openstack Monitoring Service
sKVM 1—>| Ceilometer | | Applications
o P | Meters
virtio- virtio- virtio- (polling)|
net net net Intel monitoring &
instrumentation
HOS[I 05
GigE HDD 1B
Physical Host

Figure 6: Complete cloud architecture of MIKELANGELO

From the current point of view several changes to achieve cloud integration can be foreseen to
existingcomponents. These changes waquire further changes to libvirt,hich finally will

also require changes in OpenStack Nova. These changes will require configuration data to be
read and sending commands to set up, start and stop the I/O devices in sKVM. Additionally
Intel's instrumentation and monitoring framework will et up to collect data from custom
probes. There will additionally be an integration with OpenStack Ceilometer, to allow a native
interaction with data collected by OpenStack. Finally, OSv will receive an additional
integration for application managemeiihis management will be based on composing new
OSv images from existing ones. These new images will contain custom configuration and
new services. The new images will be managed in a logically dedicated image repository,
potentially also supporting Opera®k Glance

The cloud integration is expected to receive revision during the following project phases.
Once the implementation progresses new issues and new ways to improve the integration are
expected to arise.

4.6.2 HPC

Project No. 645402 MIKELANGELO Deliverable D2.19 Page28 of 49

Public Deliverable J
<« &RS\ULJKW % H Q HMIKELADNGHLBE YrdfectV MIKELANGELO

For the HPC integration HLRS has set up a smaliidedtcluster consisting of 14 compute
nodes mirroring its production environment. The-te=d cluster consists of a dedicated front
end accessible from the outside. There is Infiniband connectivityablaifor fast data
exchange between compute nodes and a shared $HOMHyStem amongst compute nodes,
as it is present in common HPC clusters.

The software in use on HLRS' productienvironments to schedule batch jobs is Moab
(commercial license) in combination with the resource manager Torque (open source). Since
Moab is not relevant as the job deployment and execution which is solely in the responsibility
of the resource mager (Taque), there is no need for it. Torque provides simple scheduling
functionality covering our needs completely. So in all important aspects of HPC production
environments are mirrored, enabling us to validate the new concepts.

Our integration plan is dividk into the seup and configuration of the test cluster

Network[Storage

-,

User Desktop Erontend

Compute Nodes

Figure 7: HPC cluster testbed overview

environment and subsequent to this, the execution of the bones simulation to verify the
functionality of the tesbed is as intended. Followed by an execution in virtual machines
which is then compadceto the bare metal execution to identify performance issues and
bottlenecks to be focused on in the hypervisor's development.

The testbed is already able to run traditional bametal batch jobs and we are currently
extending this functionality towardsheé execution of batejobs running within virtual
machines on top of a hypervisor.

This will be achieved by making use of Torque's Prologue Egpitbgue scripts which are
executed before and after a batch job runs. These will be utilized to boot thematthanes
(VMs) in which the HPC application runs, and to tear them down afterwards.

The clear advantage of this intended-getis the ability to compare key performance
indicators (KPIs) gathered from bare metal execution with ones gathered from @xewnuti
virtual nodes.

Project No. 645402 MIKELANGELO Deliverable D2.19 Page29 of 49

Public Deliverable q
¢ &RS\ULJKW 9% H Q MIKELANGELD PrafectV MKELANGELO

Figure 8: HPC Architecture overview

Further, the execution of batch jobs within virtual nodes has the huge advantage to be
LOQOWHURSHUDEOH LQ WHUPV Rl SEXLOG RQFH UdeQoyHYHU\ZK
an HPC application ported to the VM based approach to any HPC cluster is a hypervisor able

to execute the VM.

This is a remarkable achievement compared to the traditional way where users were forced to
compile their application each time the hardsvar software environment has changed taking

into consideration not only locations of binaries, available kernels and library versions, but
also modifying build scripts or source code to be compatible with vendor specific compilers
(for example: gnu comfar, Intel compiler, Cray compiler, etc.)

Project No. 645402 MIKELANGELO Deliverable D2.19 Page30o0f 49

Public Deliverable J
<« &RS\ULJKW % H Q HMIKELADGHLBD YrdfelctV MIKELANGELO

It can be very challenging for software vendors to support users without access to identical
setups with their issues. Further, experts are currently not able to provide 4gsersda
common straight forward réoe to successfully run HPC applications in any HPC hardware
environment regardless of its hardware and software provided. Thus, HPC application
developers need to touch their build scripts and code each time as well, when they want to test
it in differentcluster environments. And in case an HPC environment is not able to cover an
application's specific needs for certain kernel, driver or library versions, it is not even possible
to be ran at all.

The virtualized approach of MIKELANGELO solves all theseadisantages, besides others,
without any additional work or deeper technical knowledge required for thesemd

These challenges can be resolved by a simple work flow. An end user fetches a standard VM
from our stack, builds his HPC application ipmedefined environment without the need to
consider unique hardware properties and features. It would even enable them to develop HPC
applications on a usual desktop PC not even close to HPC environments and then upload and
run it in such without any moddation.

Regarding performance, which in general suffers when running code in virtual machines, it is
essential to reduce the overhead for execution as far as possible. This is addressed by an
optimized hypervisor (sKVM) and operating system (OSv).

Project No. 645402 MIKELANGELO Deliverable D2.19 Page31 of 49

Public Deliverable J
<« &RS\ULJKW % H Q HMIKELADGHLBD YrdfelctV MIKELANGELO

5 Conclusions

We have shown, in many aspects, how the MIKELANGELO project will improve the
development process and deployment of HPC applications as well as their execution. It will
provide the advantage to run compiled code on any HPC infrastructure twidkeper
knowledge about its unique (and typically internal) characteristics. Our approach is based on
the dstraction of HPC hardware by heypervisor. The hypervisor is in general installed,
configured and tuned by the infrastructure owner who best ktltwsvhardware. Within the
MIKELANGELO project the hypervisor sKkVM, an improved version of KVM, is being
developed offering very low overhead for virtualisation. On top of that hypervisor the light
weight operating system OSv runs, which executes the apptid@ run. OSv causes very

low overhead in comparison to virtualized standard Linux operating systems, making our
approach in combination with sKVM feasible in first place for HPC production environments.

The presented approach will enable HPC applioatievelopers to write and test their code
on commodity hardware, like common desktop PCs, and then deploy it onto HPC
infrastructures without any additional work. Additionally resource providers will be enabled
to deploy new applications within minutes tesd of hours or days, opening an opportunity
for new service levels and ewnder support. Further, it will enable users to run HPC
applications without the need of compiling them on their own, which can be challenging in
some cases.

Instead of wasting ithe to compile and install an application code, all they need to do is to
fetch some prepared application image and execute it on top of a hypervisor, e.g. the
improved sKVM. And then run it without any knowledge about optimization features, the
actual hardiare environment or other performance influencing aspects. These are completely
abstracted and shift the requirement of HPC expert knowledge frorusensl to HPC
resource providers.

We are confident MIKELANGELO will provide significant simplification o€ application
development and usage of HPC environments in general. This will drive completely new user
groups not familiar with HPC into this domain opening massive opportunities for novel
business models for engers and infrastructure providers. Aridtee same time reduce the
workload on the HPC resource provider side for offering additional HPC applications
requested by endsers.

Project No. 645402 MIKELANGELO Deliverable D2.19 Page32 of 49

Public Deliverable J
<« &RS\ULJKW % H Q HMIKELADNGHLBE YrdfectV MIKELANGELO

6 References and Applicable Documents
[1] Xen Project Homepageitp://www.xenproject.org/

[2] KVM Homepagehttp://www.linux-kvm.org/

[3] OpenFoam Homepageitp://www.openfoam.com/
[4] Seastar Homepageitp://www.seastaproject.org/

[5] Hadoop Homepagéttps://hadoop.apache.org/

[6] Spark Hompeagéttp://spark.apache.org/

[7] OSv Homepagéttp://osv.io/
[8] OSv- Optimizing the Operating System for Virtual Machines ,

http://www.eecs.harvard.edu/cs261/papers/kivityl4.pdf

[9] RR.5XVVHOO B(:YLUWLRFWZBWGWY ®D'HG)RU ACOMW XDO ,
SIGOPS Oper. Syst. Revol. 42, pp. 95103, 2008.

[10] *:'"*qV 3XSSHW HitpsF/Hth$&$Wovh/gwda/puppepenstackcloud

[11] The MIKELANGELO projecthttp://www.mikelangeleproject.eu/

Project No. 645402 MIKELANGELO Deliverable D2.19 Page33of 49

http://www.xenproject.org/
http://www.linux-kvm.org/
http://www.openfoam.com/
http://www.seastar-project.org/
https://hadoop.apache.org/
http://spark.apache.org/
http://osv.io/
http://www.eecs.harvard.edu/cs261/papers/kivity14.pdf
https://github.com/gwdg/puppet-openstack-cloud
http://www.mikelangelo-project.eu/

Public Deliverable J
<« &RS\ULJKW % H Q HMIKELADGHLBD YrdfelctV MIKELANGELO

Appendix A — Use Case Questionnaire

The purpose of this questionnaire is to gain insight into four use cases we are gosg ttm
demonstrate advantages of using the entire MIKELANGELO stack for various types of HPC and
Cloud applications. We must focus on those topics we have already outlined in the Description of
Action, in particular (taken from easured improvements in DA

1. increased efficiency in virtualized /O,

2. increased application compatibility,

3. increased security of hypervisor, and

4. increased agility of application deployment.

At the moment, our understanding of use cases is very generic and does not provide enough
information to specify the hypervisor or guest OS architectures.

Please, do not copy from DoA. Properly filled questionnaire will define MIKELANGELO.
1 General information

1.1 Use case description

This summary must be detailed enough to help other pammeierstand the use case, its purpose and
the way it is executed in current environments.

Even though some use cases may not be well defined yet, this should not stop us from discussing so
feel free to write the description of alternatives here. This wifp lus decide together if necessary.

1.2 Current limitations

This section describes known limitations of the current approach, such as cumbersome initialisation,
lack of agility in the process, HPC provider leick etc. Remember that one of the main resuits o
MIKELANGELO is HPC Cloud facilitating execution of HPC applications on top of modified cloud
stack.

1.3 Expectations for the MIKELANGELO stack

Be a visionary! How do you imagine ideal workflow of your use case? What do you think should be
modified in the esting setup for this to happen? Think of issues you already discussed in previous
section and how you would like to overcome them.

2 Technical information

The following sections will help offering appropriate testbed infrastructure for the execution and
berchmarking of use cases for the duration of the project. Answers will also provide inputs to the
general architecture design. Try to be as verbose as possible in all your answers and prepared for
additional questions. Answers may also contain ranges (fmmghe, if your use case runs on 1
compute node, but should run on 8 to meet the maximum execution time allowed constraint, you
should specify this in your answer).

Project No. 645402 MIKELANGELO Deliverable D2.19 Page34 of 49

Questions in the following sections are about the current status of your Use Cd&) @kd also

Public Deliverable

=

<« &RS\ULJKW % H Q HMIKELANGHLBD YrdelctV MIKELANGEL

about how it should look like in the end (ABE). The later column should therefore be used for:

suggesting improvements of the current status, or
describing ideal (target) status of the feature.

2.1 Physical Hardware

any thoughts on how/what you would like to experiment witn, example, increase the
number of (virtual) nodeshare nodes with other VMs, etc.

ID Feature AS-IS TO-BE
2.1.1 | Describe the number obdes required
2.1.2 | Describe the number of CPU cores required
node
2.1.3 | Describe the amount of memory required
node
2.1.4 | Describe the network access requi
(bandwidth, network type etc.)
2.1.5 | Describe whether nodes are usedlusively by
this use case.
2.1.6 | Describe any requirements or opportunities
particular hardware support (e.g. Encrypt
support, Accelerators, Interconnects, ...)
2.1.7 | Describe any monitoring/instrumentati
facilities accessible in the havdre
2.2 Software
ID Feature AS-IS TO-BE
2.2.1 | Describe how many processes are (USU3

executed

Project No. 645402

MIKELANGELO Deliverable D2.19

Page35 of 49

Public Deliverable

<« &RS\ULJKW % H Q HMIKELADGHLB ¥rdfelctV MIKELANGELOJ

2.2.2 | Describe how many threads are (usua
executed

2.2.3 | Describe the required runtime environm

QDWLYH -DYD 9LUWXDO 0l

2.2.4 | Describe required software packag
K\SHUYLVRU .90 ;HQ «
Specify versions if necessary

2.2.5 | Describe required software packages: cl
SODWIRUP 2SHQ6WDFN 2S
Specify versions if necessary

2.2.6 | Describe required softwapackages: compilef
(gcc, icc, mpich, ...)
Specify versions if necessary

2.2.7 |Describe required software packag
applications and/or libraries (OpenFOA
2SHQO03, «
Specify versions if necessary

2.2.8 | Describe any other required software packag
Specify versions if necessary

2.2.9 | Describe special requirements for the guest
(only answer in case your UC has already b
deployed in Cloud).
Specify versions if necessary

2.2.10 | Detail any licensing constraints

2.2.11 | Describe any monitoring/instrumentatio
facilities accessible in the software stack (b
OS, hypervisor, guest OS, application)

Project No. 645402

MIKELANGELO Deliverable D2.19

Page36 of 49

Public Deliverable

2.3 Execution

<« &RS\ULJKW % H Q HMIKELADGHLB ¥rdfelctV MIKELANGELOJ

ID

Feature

AS-IS

TO-BE

2.3.1

Describe interdependencies betwse
processes/threads (for example, are procs
working onindependent subset of data or shg
the final step of the process reduce individ
results, etc).

2.3.2

Describe inteyprocess communicatio
mechanisms used

2.3.3

Describe how cases are configured

parameterised (for example, OpenFOAM n|
executearbitrary model, but we need to provi
the model and the input data to the eng
somehow).

2.3.4

Describe any possible KPIls/monitori
requirements for the use ca€mansider:

Performance * network, /O, CPU
PHPRU\ «

Non-functional / functional asgrts

Each layer: Application, Guest instan
hypervisor, physical infrastructure, ...

Any expectations, possible weaknes
or problem areas

2.3.5

Describe expected execution times

2.4 Data

ID

Feature

AS-IS

TO-BE

24.1

Describe characteristics ofput data (size, typ¢
format)

24.2

Describe characteristics of output data (s

Project No. 645402

MIKELANGELO Deliverable D2.19

Page37 of 49

Public Deliverable

<« &RS\ULJKW % H Q HMIKELADGHLB ¥rdfelctV MIKELANGELOJ

type, format)

2.4.3 | Describe any data transfers requiredbefore,
during and after execution

2.4.4 | Describe data storage requirementdefore,
during and afteexecution

2.4.5 | Describe how data is shared between run
instances

2.4.6 | Describe any sensitivities regarding d

(consider the data for the use case demonstr
as well as actual data when executed in
production environment)

2.5 Security

ID Feature AS-IS TO-BE
2.5.1 | Describe any constraints on all partn
accessing the data, or possibly sharing the da
2.5.2 | Describe any countrgpecific requirements fg
the data
2.5.3 | Describe any dataentrespecific requirement
for the usecase
2.5.4 | Describe any possible limitations to rem
access to all instances for all partners to the
case
2.5.5 | Describe any encryption needs or opportuni
in the use case
Project No. 645402 MIKELANGELO Deliverable D2.19 Page38 of 49

Public Deliverable

Appendix B - Collected Requirements

Requirements for Year 1

=

<« &RS\ULJKW % H Q HMIKELANGHLBD YrdelctV MIKELANGEL

ID Category | Title Description Resp. Party
104 | App Integrate NFS client is required in particular I Cloudius
NFS Client in| HPC use cases allowing parallel worki XLAB
OSv to read input data from and write resy
to a common workspace. The NFS clig
must support accessing of tN&S-based
files using normal system calls requiril
no modifications of HPC application
The OSv module implementing the N}
client support must also allo
configurable mount poin
In the first phase, available open sou
NFS client libraries will be ralysed anc
assessed for compliance with the HF
related requirements, maturity, licensi
constraints, supported functionalities &
extensibility. Furthermore, specif|
requirements for these libraries that |
not supported by OSv will be studied
order to chose optimal solution.
39 |App Big Data GWDG
stack running
in OSv and
sKVM
37 App OpenFOAM | OpenFOAM allows running the san XLAB
running in| input case, consisting of a 2D/3D mo« Pipistrel

OSv
skKVM

and

and model and runtime configuration,
a single pocess or in parallel executs
by a multitude of worker processes. T
parallel execution is supported by M#
The requirement must be satisfied
several steps. First, the OpenFOA
binaries must be compiled in a for
suitable for inclusion into an OSvrtual
machine allowing single process sceng
to be run successfully within OSv. TI
parallel scenario must consider chani
necessary for bootstrapping of a serie

parallel workers that are normally ry

Project No. 645402

MIKELANGELO Deliverable D2.19

Page39 of 49

Public Deliverable

<« &RS\ULJKW % H Q HMIKELADGHLB ¥rdfelctV MIKELANGELOJ

with the 'mpirun’ command.
70 Guest DPDK DPDK support/optimization on Guest fi HUA
virtio- integration on supporting dpdk host driver on Host
rdma Guest
71 Guest vhostnet vhostnet must be able to connect tq HUA
virtio- integration virtual switch
rdma with virtual
switch on
host
75 Guest Integration of| Integration of RDMA components wit HUA
virtio- RDMA Ubuntu Guest
rdma components
with Ubuntu
Guest
73 Guest Integration of HUA
virtio- RDMA
rdma components
with OSv
guest
3 Hyperviso | Hypervisor | QEMU/KVM command line API tg IBM
r command instantiate and manage VMs
line API
7 Hyperviso | Multi ~ vms | Hypervisor support / optimization fq¢ HUA
r shared multi VM on a single node, transferrir
memory data in memory
communicati
on
14 Hyperviso | Hypervisor | Compatibility between sKkVM and KV IBM
r API based on the interface
backward
copatibility
8 Hyperviso | Hypervisor | Hypervisor should be able to run Cent(IBM
r support for| Guest
CentOS gues
10 Hyperviso | Hypervisor Hypervisor should be able to run Ubur IBM
r support for| Guest
Ubuntu guest
9 Hyperviso | Hypervisor | Hypervisor should be able to run Of IBM
r support for| Guest -
OSv guest Cloudius
Project No. 645402 MIKELANGELO Deliverable D2.19 Page40 of 49

Public Deliverable

<« &RS\ULJKW % H Q HMIKELADGHLB ¥rdfelctV MIKELANGELOJ

64 Hyperviso | Hypervisor | Hypervisor should be able to run gu¢ IBM
r virtio- | physical OS with a vhosblk device backed b
blk/scsi block device| SSD, Hard discs and other such devicg

support

65 Hyperviso | Hypervisor | vhostblk/scsi must work with vitua IBM
r virtio- | virtual block| block devices such as RA#lisc
blk/scsi device

support

67 Hyperviso | virtio-scsi vhostblk/scsi must work with Ubunty IBM
r virtio- | support in| Guest
blk/scsi ubuntu guest

55 Hyperviso | Hypervisor | vhostnet should be able to connect t¢ IBM
r virtio-net | virtual virtual switch

network
conectivity

56 Hyperviso | Hypervisor | vhostnet should be able to conng IBM
r virtio-net | physical directly to the physical NIC (throug

network macvtap)
conectivity

58 Hyperviso | Hypervisor | Hypervisor should be able to run Ubur IBM
r virtio-net | ubuntu gues] guest with a virtienet virtual NIC

support

89 Hyperviso | Vhost support for vhostiser HUA
r virtual | support in
switch Hypervisor's

user space

88 Hyperviso | DPDK Poll | support for DPDK Poll Mode Driver fo HUA
r virtual | Mode Driver| RDMA
switch support on

Host
18 Infrastruct | Integration off The modified hypervisor, sKVM, muy§ GWDG
ure the modified| be packaged and integrated with | xLAB
hypervisor OpenStack installation scripts allowir
with end users to seamlessly install and/or
OpenStack | both KVM and the improved vsion
sKVM. Further to extending the libvil
API as part of req #101, this requires t|
the libvirt changes are proper
addressed in the OpenStack Iaj
facilitating booting and controlling
virtual machines using SKVN
capabilities. The integration showtiow
using Compute nodes of differe
Project No. 645402 MIKELANGELO Deliverable D2.19 Page41 of 49

Public Deliverable

<« &RS\ULJKW % H Q HMIKELADGHLB ¥rdfelctV MIKELANGELOJ

hypervisor types interchangeably. T,
first revision of this integration will focu
on unifying APIs, while the next versiol
will also work on the integration with th
Dashboard (UI).
15 Infrastruct | Hyperviser | Change cluster setup to be able to | HLRS
ure Integration (different) hypervisor. Integration int
for HPC Torque (=ResourceManager+Scheduly
for starting HPC batch jobs inside VMs
101 | Infrastruct | Libvirt Update the libvirt XML configuratior GWDG
ure integration schena supporting components of t XLAB
for sKVM modified hypervisor. The changes will |
introduced based on the developer scr
for instantiating VMs during th
development and also on the mut
decision about the approprig
configuration options to be exposed
endusers. The necessary changes |
comply with libvirt schema.
42 Monitorin | Capture Cloudius
g performance
metrics of
guest OS -
OSv
41 Monitorin | Capture hypervisor needs to expose metrics tg IBM
g performance | monitored by the monitoring system Intel
metrics of
host
Hypervisor -
sKVM
40 Monitorin | Hardware Monitoring system needs to be able| Intel
g Monitoring capture performance metrics and he;
status of physical hardware.g. via out
of-band or operating system facilities
45 Monitorin | Monitoring Monitoring system needs a GUI to allq Intel
g GUI all captured metrics to be queried 3
explored
43 Monitorin | Services/App| Monitoring system needs to be able| Intel
g lications capture use&ase specific metrics e.g. Cloudius
Monitoring serviceor application performance data|
use case
providers
Project No. 645402 MIKELANGELO Deliverable D2.19 Page42 of 49

Public Deliverable

<« &RS\ULJKW % H Q HMIKELADGHLB ¥rdfelctV MIKELANGELOJ

Monitorin
g

Hypervisor
Monitoring

Monitoring system needs to be able
capture hypervisor metrics

Intel
IBM

OSv

RDMA API
passthrough
support for
OSv

OSv support for Infiniband hardwa
(virtual interfaces)

HUA

30

OSv

RDMA core
driver
support
OSv

for

OSv support for RDMA (core driver ¢
InfiniBand)

HUA

20

OSv

OSv support
environment
variables

Cloudius

23

OSv

OSv support
API for
monitoring

the instances

Cloudius

29

OSv

OSv support
multi-
threading

Cloudius

35

OSv

Extended
support
functions
from
Linux/libc

for

Cloudius

96

Security

Intrusion
detection on
Hypervisor
level

Hypervisor mechanism to detect
mitigate cross/M information
extraction via sidehannels

BGU
IBM
Intel

961

Security

Prime&Probe
metaattack
outside
KVM

of

Implement a prime&probe attack in us
space (off KVM)

BGU

962

Security

Prime&Probe
metaattack
inside

KVM

of

Implement a primeé&probe attack in us
space (as a VM over KVM)

BGU

963

Security

Target VM
implementati
on

Implement a target VM running SS
authentication

BGU

Project No. 645402

MIKELANGELO Deliverable D2.19

Page43of 49

Public Deliverable J
<« &RS\ULJKW % H Q HMIKELADNGHLBE YrdfectV MIKELANGELO

964 | Security | Collect Identify the available counters af BGU
timing and| register that contain relevant informatif
counter for performing timingbased cach|
information | attacks
from cache

Project No. 645402 MIKELANGELO Deliverable D2.19 Page44 of 49

Public Deliverable

<« &RS\ULJKW % H Q HMIKELADGHLB ¥rdfelctV MIKELANGELOJ

Requirements for Year 2 and Year 3

ID | Category | Title Description Resp. Party
1 Hypervisor Hypervisor /cloud middleware suppol GWDG
for contextualization of the virtug
instances
4 Hypervisor Hypervisor installation instructions fo| IBM
the modified hypervisor
5 Hypervisor Hypervisor installation package f(GWDG
CentOS (RPM) or complient Tarball
11 | Hypervisor Hypervisor support for up to 256 G IBM
memory
12 | Hypervisor Hypervisor supporfor up to 64 virtual IBM
cores
13 | Hypervisor Hypervisor installation package f(GWDG
Ubuntu (DEB) or compliant Tarball
16 | Infrastruct Infrastructure contextualization scrig GWDG
ure for the UCs XLAB
17 | Infrastruct OpenNebula adaptation for modifie¢ HLRS
ure Hypervisor
21 | OSv OSv optimization / specig Cloudius
communication to Hypervisor Cross HUA
layer optimization
IBM
24 | OSv OSv support for contextualization of V| Cloudius
instances XLAB
26 | OSv OSv support for infrastructure pag HUA
through (maybe Infiniband, to L
specified)
27 | OSv OSvsupport for message passing Cloudius
XLAB
28 | OSv As OSv does not support multip Cloudus
processes, how can we integr;
standareexecution mechanisms wil
multiple processes in OSv? A guidelir
work-around, examples are necessary’
31 | OSv OSv support for RoCE HUA
Project No. 645402 MIKELANGELO Deliverable D2.19 Page45 of 49

Public Deliverable

<« &RS\ULJKW % H Q HMIKELADGHLB ¥rdfelctV MIKELANGELOJ

32 | OSv OSv support for standard softwg
packages (to be specified)
33 | OSv OSv support for up to 256 GB memory| Cloudius
34 | OSv OSv support for up to 64 cores Cloudius
36 |OSv Support environment variables | XLAB
Capstan
38 | App Bones app must be running in OSv ¢ HLRS
SKVM
44 | Monitoring Scalableinfrastructure for consolidatin| Intel
captured data
46 | Monitoring Ability to dynamically adjust metricy Intel
being captured GWDG
XLAB
47 | OSv Support for Ruby runtime eironment | XLAB
Cloudius
48 | OSv Support for Go runtime environment | XLAB
Cloudius
49 | OSv Support for Node.js runtime environme XLAB
Cloudius
50 | Infrastruct OpensStack installation scripts must all{ GWDG
ure installing sKkVM instead of KVM XLAB
51 | Infrastruct Capstan must allow publishing of imag XLAB
ure to OpenStack Image sereic
52 | Infrastruct Capstan must allow using OpenStg XLAB
ure Image Service as base images to
extended
57 | Hypervisor Integration with OSv guest Cloudius
virtio-net
59 | Hypervisor Support for GbE hardware IBM
virtio-net
60 | Hypervisor Support for 10GbE hardware IBM
virtio-net
61 | Hypervisor Support for Infiniband hardware
virtio-net

Project No. 645402

MIKELANGELO Deliverable D2.19

Page46 of 49

Public Deliverable

<« &RS\ULJKW % H Q HMIKELADGHLB ¥rdfelctV MIKELANGELOJ

62 | Hypervisor Increase scalality IBM
virtio-net

63 | Hypervisor Better support for dynamic workloads | IBM
virtio-net

66 | Hypervisor Integration with OSv guest Cloudius
virtio-
blk/scsi

68 | Hypervisor Increase scalability IBM
virtio-
blk/scsi

69 | Hypervisor Better support for dynamic workloads | IBM
virtio-
blk/scsi

72 | Guest vhostnet must be able to conng HUA
virtio-rdma directly to the physical NIC (without)

74 | Guest Crosslayer optimization with OSv gues| HUA
virtio-rdma IBM

Cloudius

76 | Guest Support for GbE hardware HUA
virtio-rdma

77 | Guest Support for Infiniband core driver HUA
virtio-rdma

78 | Guest Abstract and support API in gug HUA
virtio-rdma application (socket, RDMA verbd

DPDK and/or NetMap)

79 | Guest Support for Poll Mode Driver for RDMA] HUA
virtio-rdma

80 | Guest Support RDMA verbs pass through HUA
virtio-rdma

81 | Guest Optimize RDMA verbs pass through | HUA
virtio-rdma

82 | Guest Handle and process RDM| HUA
virtio-rdma communication buffer, event queues, ¢

requests

83 | Guest Support rsocket API and optimiz HUA
virtio-rdma traditional socket communication

84 | Hypervisor RDMA device management HUA
virtual

Project No. 645402 MIKELANGELO Deliverable D2.19 Page47 of 49

Public Deliverable

<« &RS\ULJKW % H Q HMIKELADGHLB ¥rdfelctV MIKELANGELOJ

switch
85 | Hypervisor Translate and map the RDM HUA
virtual communication buffer with TX/RX ringg
switch
86 | Hypervisor Direct the flows for intelVM intra-Host | HUA
virtual and intefVM inter-Host communication: IBM
switch
87 | Hypervisor Support for ivshmem for inte¢M intra- | HUA
virtual Host communication
. IBM
switch
90 | Hypervisor Manage the verb calls that passed fi HUA
virtual guest OS
switch
91 | Hypervisor Event communication with virttwdma| HUA
virtual and vhostuser
switch
92 | Hypervisor Handle the RDMA completion evel HUA
virtual gueues and requests
switch
93 | Hypervisor Integration with OSv HUA
RoCE
94 | Hypervisor Integration with Ubuntu Guest HUA
RoCE
95 | Hypervisor Support for GbE hardware HUA
RoCE
97 | Security OpenStack mechanism for V| BGU
migration/assignment, _ balancing GWDG
performance and security
XLAB
98 | Security HypervisorOpenStack protocol t{ BGU
exchange security assessment of VMs GWDG
XLAB
99 | Security Runtime toggle to stop operation (BGU
hypervisor security mechanisms
100 | App Cloud Bursting must be running in O Cloudius
and skVM
102 | Infrastruct OpenstaclCeilometer support for sKVV, Intel
ure

Project No. 645402

MIKELANGELO Deliverable D2.19

Page48of 49

Public Deliverable

<« &RS\ULJKW % H Q HMIKELADGHLB Vrdfelct V MIKELANGELOJ

103 | OSv Heat integration as Plugin

105 | App NFS Server should be available in O| Cloudius
images XLAB

Project No. 645402 MIKELANGELO Deliverable D2.19 Page49 of 49

	1 Introduction
	2 MIKELANGELO Goals
	2.1 Goals
	2.2 Line of Approach

	3 Requirements
	4 Architecture
	4.1 Overall Architecture
	4.2 The sKVM Architecture
	4.2.1 Main Structure of sKVM

	4.3 Guest Operating System (OSv) Architecture
	4.3.1 The OSv Kernel
	4.3.2 The Seastar Library
	4.3.3 OSv Image Packaging

	4.4 Security Mechanisms
	4.4.1 SCAM Architecture
	4.4.2 Monitoring
	4.4.3 Profiling
	4.4.4 Mitigation
	4.4.5 Kernel Module

	4.5 Cross-layer Optimisation
	4.6 Integration into Infrastructures
	4.6.1 Clouds
	4.6.2 HPC

	5 Conclusions
	6 References and Applicable Documents
	Appendix A – Use Case Questionnaire
	1 General information
	1.1 Use case description
	1.2 Current limitations
	1.3 Expectations for the MIKELANGELO stack

	2 Technical information
	2.1 Physical Hardware
	2.2 Software
	2.3 Execution
	2.4 Data
	2.5 Security

	Appendix B - Collected Requirements

