

Public Deliverable

�‹���&�R�S�\�U�L�J�K�W���%�H�Q�H�I�L�F�L�D�U�L�H�V���R�I���W�K�H��MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.19 Page 1 of 49

MIKELANGELO

D2.19

The first MIKELANGELO architecture

Workpackage: 2 Use Case & Architecture Analysis

Author(s): Michael Gienger HLRS

 Nico Struckmann HLRS
 Uwe Schilling HLRS
 Peter Chronz GWDG
 Maik Srba GWDG
 Gabriel Scalosub BGU
 �1�D�G�D�Y���+�D�U�¶�(�O Cloudius

Reviewer Eyal Moscovici IBM

Reviewer Gregor Berginc XLAB

Dissemination
Level Public

Public Deliverable

�‹���&�R�S�\�U�L�J�K�W���%�H�Q�H�I�L�F�L�D�U�L�H�V���R�I���W�K�H��MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.19 Page 2 of 49

Date Author Comments Version Status
2015-08-05 Michael Gienger Initial draft V0.0 Draft
2015-08-07 Nico Struckmann,

Uwe Schilling
Additions V0.1 Draft

2015-08-12 Nico Struckmann,
Uwe Schilling

Additions V0.2 Draft

2015-08-20 Peter Chronz Added description of the cloud
integration

V0.3 Draft

2015-08-21 Nico Struckmann Inclusion and Arrangement of the
various partner contributions

V0.4 Draft

2015-08-26 Micheal Gienger,
Nico Struckmann,
Uwe Schilling

Document finalized.
Ready for review.

V0.5 Review

2015-08-31 Nico Struckmann,
Michael Gienger

Finalization of the Deliverable V1.0 Final

Public Deliverable

�‹���&�R�S�\�U�L�J�K�W���%�H�Q�H�I�L�F�L�D�U�L�H�V���R�I���W�K�H��MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.19 Page 3 of 49

Executive Summary

This deliverable is the first of three deliverables dealing with the overall architecture for
MIKELANGELO and therefore, acts as a baseline for all the upcoming deliverables and
developments. It covers all the mandatory information, starting from requirements, reaching
to design and development plans and indicates already specialized information, such as the
foreseen underlying software versions for the developments.

This document describes the overall goals of MIKELANGELO and outlines its approach. In
order to generate a novel standard technology, various kinds of requirements have been
introduced: infrastructure, use case, software requirements and in particular, the
MIKELANGELO vision built up a model that includes all relevant views and opinions to
create a modular and extensible architecture. Special attention has been put to the modular
design, because the technology evolves so rapidly at the moment. This approach enables easy
replacement and optimization of individual components. In conjunction with the continuous
technology and architecture monitoring, state-of-the-art software development can be
guaranteed and leads to a software package with industrial and academic relevance.

As detailed above, MIKELANGELO has aligned its technical development methods in order
to create an exploitable software product with significantly improved performance for
industries, small and medium sized companies as well as academia. As can be seen, this
strong business oriented approach does not only help to create a recognized product, it even
helps to improve and refine the overall development cycles for state-of-the-art software.

Public Deliverable

�‹���&�R�S�\�U�L�J�K�W���%�H�Q�H�I�L�F�L�D�U�L�H�V���R�I���W�K�H��MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.19 Page 4 of 49

Table of Contents

1 Introduction .. 8

2 MIKELANGELO Goals .. 9

2.1 Goals .. 9

2.2 Line of approach .. 10

3 Requirements .. 11

4 Architecture .. 18

4.1 Overall architecture ... 18

4.2 sKVM architecture .. 19

4.2.1 sKVM main structure ... 20

4.3 Guest operating system (OSv) architecture ... 21

4.3.1 The OSv Kernel .. 22

4.3.2 The Seastar library ... 23

4.3.3 OSv Image packaging .. 23

4.4 Security Mechanisms ... 23

4.4.1 SCAM Architecture .. 23

4.4.2 Monitoring .. 24

4.4.3 Profiling .. 24

4.4.4 Mitigation ... 24

4.4.5 Kernel Module .. 25

4.5 Cross-layer optimisation .. 25

4.6 Integration into infrastructures .. 25

4.6.1 Clouds ... 26

4.6.2 HPC .. 28

5 Conclusions .. 32

6 References and Applicable Documents .. 33

Appendix A �± Use Case Questionnaire .. 34

1 General information ... 34

1.1 Use case description .. 34

1.2 Current limitations ... 34

1.3 Expectations for the MIKELANGELO stack .. 34

2 Technical information .. 34

Public Deliverable

�‹���&�R�S�\�U�L�J�K�W���%�H�Q�H�I�L�F�L�D�U�L�H�V���R�I���W�K�H��MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.19 Page 5 of 49

2.1 Physical Hardware ... 35

2.2 Software ... 35

2.3 Execution ... 37

2.4 Data .. 37

2.5 Security .. 38

Appendix B - Collected Requirements ... 39

Public Deliverable

�‹���&�R�S�\�U�L�J�K�W���%�H�Q�H�I�L�F�L�D�U�L�H�V���R�I���W�K�H��MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.19 Page 6 of 49

Table of Figures

Figure 1: Overall Architecture 18

Figure 2: sKVM Architecture 20

Figure 3: OSv in relation to the work packages 22

Figure 4: SCAM modules 24

Figure 5: Scalable high-availability deployment of OpenStack 26

Figure 6: Complete cloud architecture of MIKELANGELO 28

Figure 7: HPC cluster testbed overview 29

Figure 8: HPC Architecture overview 30

file:///D:/MyDocuments/MIKELANGELO/Deliverables/D2.19.docx%23_Toc428810268

Public Deliverable

�‹���&�R�S�\�U�L�J�K�W���%�H�Q�H�I�L�F�L�D�U�L�H�V���R�I���W�K�H��MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.19 Page 7 of 49

Glossary

API = Application Programming Interface

CPU = Central Processing Unit

DPDK = Data Plane Development Kit

GUI = Graphical User Interface

HPDA = High Performance Data Analytics

HPC = High Performance Computing

I/O = Input / Output

KPI = Key Performance Indicators

KVM = Kernel-based Virtual Machine

LTS = Long-Term Support

MPI = Message Passing Interface

NFS = Network File System

NIC = Network Inter-Connect

OS = Operating System

POSIX = Portable Operating System Interface

QEMU = Quick Emulator

RDMA = Remote Direct Memory Access

SCAM = Side-Channel Attack Monitoring/Mitigation

SMP = Symmetric Multi-Processing, allows a single virtual machine to use
two or more processors simultaneously

UC = Use Case

VM = Virtual Machine

WP = Work package

XML = Extensible Markup Language

Public Deliverable

�‹���&�R�S�\�U�L�J�K�W���%�H�Q�H�I�L�F�L�D�U�L�H�V���R�I���W�K�H��MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.19 Page 8 of 49

1 Introduction
This deliverable provides an overview of the target architecture in general as well as it
summarizes the progress achieved during the first eight months of the MIKELANGELO
project and its resulting conclusions. It represents the first deliverable that contains technical
information of the project. Furthermore, it acts as a baseline for all technical work packages
(WPs), such as WP3, WP4, WP5 and WP6 and will be continuously updated in order to
reflect the current state of the art.

In order to understand the project and its vision, a brief description of the current limitations
of virtualisation technology are presented. Furthermore, the major goals are defined for a clear
understanding of the overall document structure. The process of the software development
follows the traditional waterfall model: requirements collection and analysis, architecture
definition, component selection and implementation and finally, software validation.
However, product design, business orientation and standardization require a more agile
process in order to reflect the current technology state of the art. Therefore, agile methods
have been introduced, which lead to a number of iterations that guarantee stable and
technology oriented software development. This overall design and development process is
also reflected in the structure of the document, although the validation process will be detailed
within the deliverables of WP6.

The requirements with its different views act as the basis for the modular architecture. As the
MIKELANGELO project contains several development branches, the architecture is
comprised of various components: the hypervisor sKVM, the guest operating system OSv, the
security capabilities and the ability to monitor and orchestrate the systems lead to a complex
initial architecture with numerous interdependencies. All building blocks demand different
developments with different baselines and complexity in order to design and implement the
required functionality and thus, are highlighted and described in detail in this document.
Furthermore, initial mechanisms to integrate the software stack into traditional Cloud and
HPC infrastructures is presented reaching the final goal of the MIKELANGELO project, a
high performing cloud-like software stack.

All this information forms the structure of the document. Within section 2, the initial goals
and the approach are described. Section 3 highlights the requirements, the prioritization and
the categories. In section 4, the overarching architecture building on the requirements is
detailed presenting the modular design. Finally, section 6 concludes the whole document.

Public Deliverable

�‹���&�R�S�\�U�L�J�K�W���%�H�Q�H�I�L�F�L�D�U�L�H�V���R�I���W�K�H��MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.19 Page 9 of 49

2 MIKELANGELO Goals
�$�V�� �W�K�L�V�� �G�H�O�L�Y�H�U�D�E�O�H�� �³�'���������± �7�K�H�� �I�L�U�V�W�� �0�,�.�(�/�$�1�*�(�/�2�� �D�U�F�K�L�W�H�F�W�X�U�H�´�� �U�H�S�U�H�V�H�Q�W�V�� �W�K�H�� �I�L�U�V�W��
project document that includes technical and architectural information, the general goals of
MIKELANGELO will be highlighted at first in order to understand the intended direction of
the project in detail. In the following, the MIKELANGELO approach will be described.

2.1 Goals
The goal of MIKELANGELO is to develop an approach and the accompanying software that
will disrupt the traditional HPC and Private Cloud fields. The focus on the fields of security,
flexibility and performance is presented in the following document.

Currently, the so-called hypervisors are used to divide a physical node into one or more
virtual nodes (virtual machines �± VMs), which leads to sharing of resources for an efficient
overall usage of the physical infrastructure. However, this mechanism introduces a
management layer, which transfers the data between the virtual machines and the physical
infrastructure and maps the requests and events of the different systems. So, this complex
management layer enables sharing of resources, but at the same time disables high
performance access to the physical sub systems due to its transfer mechanisms. This
circumstance introduces bottlenecks for all virtualized environments in regards to I/O,
memory and CPU. In particular, one limiting factor is currently the support of specialized
network interfaces such as Infiniband and its included protocol: remote direct memory access
(RDMA). Although there are hypervisors available like commercial versions of Xen that
already support this kind of functionality, the integration in the open source hypervisor KVM
is desired as virtualisation using kernel modules in state of the art operating systems provides
more flexibility in terms of usability and system updates. Whilst the performance of the
memory and processing systems within the virtual machines and the physical nodes underlie a
continuous evolution process, the system storage back-end of the hypervisors falls behind and
lacks the required latency and bandwidth. Especially at this working point, new mechanisms
are mandatory in order to exchange data between the VMs and the physical infrastructure in a
more efficient manner. Finally, full virtualisation of operating systems results in a lower
overall performance due to doubling (or even more, depending on the amount of virtual
resources per node) of operating system components. A light weight guest operating system is
required, which will improve the communication with the underlying host operation system
and the bare metal hardware. As a result, shorter booting times and more efficient
communication between the hypervisor and the virtual operating system will enable higher
performance.

Within the project, those major issues will be addressed in order to provide an advanced
technology that enables High Performance Computing (HPC) with all its deviations, like High
Performance Data Analytics (HPDA) and many more in the Cloud, and even on commodity
hardware to a certain extent limited by the hardware capabilities. However, production
systems require not only high performance and reliability, they need to be fail-safe and
secure. As a consequence, MIKELANGELO will not only target performance issues, but will
also introduce sophisticated security mechanisms in its architecture and the following
developments. These aforementioned goals demand the collection of an appropriate
requirements list, which has been initially captured throughout the first six months of the
project. Nevertheless, the ambitious goals of MIKELANGELO require a continuous

Public Deliverable

�‹���&�R�S�\�U�L�J�K�W���%�H�Q�H�I�L�F�L�D�U�L�H�V���R�I���W�K�H��MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.19 Page 10 of 49

technology and architecture analysis so that this document acts as a baseline for all the
�S�U�R�M�H�F�W�¶�V���G�H�Y�H�O�R�S�P�Hnts and as a consequence, will be continuously updated.

2.2 Line of Approach
The results of MIKELANGELO will be validated by four different types of applications,
available to the project as independent use-case. Pure HPC capabilities will be introduced by
the simulation of cancellous bones on the basis of the message passing interface (MPI) and
the simulation of turbulence at airplane winglets using OpenFOAM1. For Cloud usage
requirements, the simulation of a Cloud Bursting case study, implemented and executed via
Seastar2 and a Big Data intensive application will be targeted. Especially the Big Data
intensive application will lead to support various kinds of frameworks, such as Hadoop3 or
Spark4 and will therefore result in highly interesting state of the art HPDA requirements as
well. These four use cases form the basis for the initial modular design of the architecture,
allowing easy reconfiguration or even replacement of components and thus functionality.

As already detailed, the major performance bottlenecks for the KVM virtualisation stack will
be addressed in MIKELANGELO. Nevertheless, an innovative and exploitable product
design requires more than just optimization, it also needs to improve the communication
between all involved software component�V�����W�K�H���V�R���F�D�O�O�H�G���³�F�U�R�V�V���O�H�Y�H�O���R�S�W�L�P�L�]�D�W�L�R�Q�´�����7�K�L�V���Z�L�O�O��
significantly improve the interaction between the highly improved KVM hypervisor, the so
called sKVM, and OSv5, the operating system for the cloud. In addition, it will allow standard
operation for all the other well-known operating systems. In other words, virtualisation using
the operating system OSv will be optimized by dedicated interfaces. Other widely used
operating systems will still gain from individual improvements in components such as sKVM,
OpenStack, monitoring and instrumentation, but will not exhibit the full power of
performance and flexibility improvements provided by this cross-layer optimisations.

In general, the architecture of MIKELANGELO relies on requirements, derived from the
project vision, from the use cases and from the infrastructure providers. This process ensures
that different views are reflected in an appropriate manner and leads to a broad understanding
of required functionality. So, the presented approach ensures uptake of the results by manifold
stakeholders and finally enables a production ready solution, which can be used in Clouds and
High Performance Computing infrastructures.

1 http://www.openfoam.com/
2 http://www.seastar-project.org/
3 https://hadoop.apache.org/
4 http://spark.apache.org/
5 http://osv.io/

Public Deliverable

�‹���&�R�S�\�U�L�J�K�W���%�H�Q�H�I�L�F�L�D�U�L�H�V���R�I���W�K�H��MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.19 Page 11 of 49

3 Requirements
During the first six months of the project, requirements have been gathered from all the
project partners. In order to support all use cases and create the building blocks of
MIKELANGELO, the requirements are directly derived from their intended Use Cases (UCs).
However, to provide the project with a comprehensive view on all kinds of technologies,
including system operation, additional requirements have been captured to guarantee uptake
of the final software product and enable efficient system operation. It is important to mention
that the requirements collection is a continuous process that involves the development cycles
of all the other work packages. The agile development process therefore leads to refinements,
extensions or even new requirements throughout all cycles of the project. Thus, the
requirements document will be updated on a regular basis with new or altered (business)
requirements of the four use cases or as a consequence of new developments in the field of
virtualisation.

Initially, the requirements of the use cases have been gathered via use case questionnaires
[Appendix A �± Use Case Questionnaire]. This process fulfils two different goals: on the one
hand, the use cases can be understood in detail and on the other, a first set of requirements can
be generated, reflecting the requested (high-level) functionality. As a result, four sets of
requirements have been compiled into one single document. In addition, this document has
been enriched by infrastructure requirements and requests of the overall project vision.

After collecting this information, refinements of the coarse-grained requirements have been
conducted to obtain a precise and self-explanatory list that can be used to create a
development plan. For this development plan, a prioritization of the more than 100 initial
requirements was mandatory. Therefore, a weighted approach involving all partners and the
technical leadership has been taken. The following priority levels were available for all
requirements allowing all partners to express their interest:

1 - High priority
A requirement is mandatory

2 - Low priority
A requirement is nice to have but not mandatory from the perspective of a
partner

3 - Indifference
Partner does not need the requirement nor do they oppose to having it
implemented

4 - Weak reject
 A requirement could be implemented but advising against

5 - Strong reject
Partner expresses that a requirement is not in line with the project, not useful
or reasonable or provides an additional clarification

Priorities 1, 2, 4 and 5 may be aligned with the widely used MoSCoW (Must, Should, Could,
Will not) analysis. However, the deliberate decisions to introduce priority 3 (indifference) was
made to facilitate fair prioritisation. For example, one use case provider might choose

Public Deliverable

�‹���&�R�S�\�U�L�J�K�W���%�H�Q�H�I�L�F�L�D�U�L�H�V���R�I���W�K�H��MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.19 Page 12 of 49

�³�&�R�X�O�G�´���R�U���H�Y�H�Q���³�:�L�O�O���Q�R�W�´���I�R�U���U�H�T�X�L�U�H�P�H�Q�W�V���R�I���W�K�H���R�W�K�H�U���X�V�H���F�D�V�H���X�V�L�Q�J���V�W�D�Q�G�D�U�G���0�R�6�&�R�:����
but in our case a priority of 3 guaranteed this did not occur.

As a result, priorities for all requirements have been captured, including th�H���S�U�R�M�H�F�W�¶�V���Y�L�V�L�R�Q����
the infrastructure and use case providers as well as all partners in general. Prioritisation was
done automatically using average priority with an additional condition that if two or more
partners marked a requirement as mandatory its overall priority was also mandatory.
Following the automatic prioritisation, the consortium refined the list once more to make it
coherent, meaningful and also consider interdependencies between requirements. Finally, all
requirements have been annotated with categories in order to create a meaningful and realistic
development plan for year one of the project that supports all the requested functionality.

For year two and three of the project, the prioritization list is already available. However, the
agile development process and the continuous architecture and technology monitoring
demand flexibility for all introduced mechanisms. Therefore, the development plans for later
phases of the project will be created in-time, involving the technical coordinator and all
project partners.

In general there are ten different categories for requirements [Appendix B - Collected
Requirements]:

�” App
Application specific requirements derived from the Use Cases

�” Guest virtio-rdma
Requirements for the Guests-OS (VMs) in regards to virtual I/O via RDMA

�” Hypervisor
Hypervisor specific requirements

�” Hypervisor virtio-blk/scsi
Requirements for the Hypervisor's virtual I/O block and SCSI devices

�” Hypervisor virtio-net
Requirements for the Hypervisor's virtual I/O via network

�” Hypervisor virtual switch
Requirements for the Hypervisor's virtual switch capabilities

�” Infrastructure
Requirements required to be considered for future integration into HPC environments

�” Monitoring
All monitoring related requirements, concerning the whole stack (guest & hypervisor
performance, hardware health, services and applications state, GUI for observation)

�” OSv
All requirements for virtual guest operating system OSv not covered by the above
ones

�” Security
Requirements addressing security concerns in a virtualized environment.

Public Deliverable

�‹���&�R�S�\�U�L�J�K�W���%�H�Q�H�I�L�F�L�D�U�L�H�V���R�I���W�K�H��MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.19 Page 13 of 49

41 out of 139 initially identified requirements have been agreed on by all partners, to be the
focus of the first year of the project. The primary motivation for choosing this subset of
requirements was to define ambitious goal of delivering the first version of the
MIKELANGELO stack by the end of first year already demonstrating key ideas of the
project. These requirements are elaborated in detail below and ordered by the previously
mentioned categories. The whole list of requirements can be found in the annex, including
also those remaining that will be refined and reconsidered in later stages of the project.

1. App

ID Requirement Description

#102 Integrate NFS Client in OSv For parallel HPC applications it's usually essential
to have a common file-system shared amongst all
compute nodes

#39 Big Data stack running in OSv
and sKVM

sKVM and OSv need to be able to run �³�%�L�J���'�D�W�D�´��
software stacks to cover Use Case needs

#37 OpenFOAM running in OSv
and sKVM

sKVM and OSv need to be able to run
OpenFOAM applications

2. Guest virtio-rdma

ID Requirement Description

#70 DPDK integration on Guest Support inside the virtualized Host for DPDK's
host driver

#71 vhost-net integration with
virtual switch on host

Guest's virtual vhost-net adapter must be able to
connect to a virtual switch

#75 Integration of RDMA
components with Ubuntu
Guest

Ubuntu Guest must be able to make use of RDMA

#73 Integration of RDMA
components with OSv guest

OSv Guest must be able to make use of RDMA

Public Deliverable

�‹���&�R�S�\�U�L�J�K�W���%�H�Q�H�I�L�F�L�D�U�L�H�V���R�I���W�K�H��MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.19 Page 14 of 49

3. Hypervisor

ID Requirement Description

#03 Hypervisor command line
API

QEMU/KVM command line API to instantiate and
manage VMs through sKVM(?)

#07 Multi VMs shared memory
communication

Hypervisor support / optimization for multi VM on
a single node, transferring data in memory

#14 Hypervisor API backwards
compatibility

Compatibility between sKVM's and KVM's
interface

#08 Hypervisor support for
CentOS guest

Hypervisor should be able to run CentOS Guest

#10 Hypervisor support for
Ubuntu guest

Hypervisor should be able to run Ubuntu Guest

#09 Hypervisor support for OSv
guest

Hypervisor should be able to run OSv Guest

4. Hypervisor virtio-blk/scsi

ID Requirement Description

#64 Hypervisor physical block
device support

Hypervisor should be able to run guest OS with a
vhost-blk device backed by SSD, Hard discs and
other such devices

#65 Hypervisor virtual block
device support

vhost-blk/scsi must work with virtual block devices
such as RAM-disc

#67 Virtio -scsi support in Ubuntu
guest

vhost-blk/scsi must work with Ubuntu Guest

Public Deliverable

�‹���&�R�S�\�U�L�J�K�W���%�H�Q�H�I�L�F�L�D�U�L�H�V���R�I���W�K�H��MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.19 Page 15 of 49

5. Hypervisor virtio-net

ID Requirement Description

#55 Hypervisor virtual network
connectivity

Vhost-net should be able to connect to a virtual
switch

#56 Hypervisor physical network
connectivity

Vhost-net should be able to connect directly to the
physical NIC (through macvtap)

#58 Hypervisor Ubuntu guest
support

Hypervisor should be able to run Ubuntu guest with
a virtio-net virtual NIC

6. Hypervisor virtual switch

ID Requirement Description

#89 Vhost support in Hypervisor's
user space

support for vhost-user

#55 DPDK Poll Mode Driver
support on Host

support for DPDK Poll Mode Driver for RDMA

7. Infrastructure

ID Requirement Description

#18 Integration of the modified
hypervisor with OpenStack

Hypervisor must be packaged with OpenStack
installation scripts allowing end users to seamlessly
install and/or use both KVM and the improved
version sKVM

#15 Hypervisor integration for
HPC

Change cluster setup to be able to use (different)
hypervisor. Integration into Torque
(=ResourceManager+Scheduler) for starting HPC
batch jobs inside VMs

Public Deliverable

�‹���&�R�S�\�U�L�J�K�W���%�H�Q�H�I�L�F�L�D�U�L�H�V���R�I���W�K�H��MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.19 Page 16 of 49

#101 Libvirt integration for sKVM Update the libvirt XML configuration schema
supporting components of the modified hypervisor.

8. Monitoring

ID Requirement Description

#42 Capture performance metrics
of guest OS �± OSv

Hypervisor needs to expose OSv metrics to be
monitored by the monitoring system

#41 Capture performance metrics
of host Hypervisor - sKVM

Hypervisor needs to expose sKVM metrics to be
monitored by the monitoring system

#40 Hardware Monitoring Monitoring system needs to be able to capture
performance metrics of physical hardware

#45 Monitoring GUI Monitoring system needs a GUI to allow all
captured metrics to be queried and explored

#43 Services/Applications
Monitoring

Monitoring system needs to be able to capture use-
case specific metrics

#02 Hypervisor Monitoring Monitoring system needs to be able to capture
hypervisor metrics

9. OSv

ID Requirement Description

#26 RDMA API pass-through Support for OSv Support for Infiniband hardware
(virtual interfaces)

#30 RDMA core driver support
for OSv

Support for RDMA (core driver of Infiniband)

#20 OSv support environment
variables

Support for environment variables inside OSv

Public Deliverable

�‹���&�R�S�\�U�L�J�K�W���%�H�Q�H�I�L�F�L�D�U�L�H�V���R�I���W�K�H��MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.19 Page 17 of 49

#23 OSv support / API for
monitoring the instances

OSv must be able to provide monitoring data for
instances through an API

#29 OSv support multi-threading OSv needs to support multi-threading

#35 Extended support for
functions from Linux/libc

Support for functions from Linux/libc need to be
supported

10. Security

ID Requirement Description

#96 Intrusion detection on
Hypervisor level

Hypervisor mechanism to detect or mitigate cross-
VM information extraction via side channels

#961 Prime&Probe meta-attack
outside of KVM

Implement a prime&probe attack in user space (off
KVM)

#962 Prime&Probe meta-attack
inside of KVM

Implement a prime&probe attack in user space (as a
VM over KVM)

#963 TargetVM implementation Implement a target VM running SSL authentication
which can then be attacked to validate the upcoming
security mechanisms to prevent exploitation of
valuable user data

#964 Collect timing and counter
information from cache

Identify the available counters and register that
contain relevant information for performing timing-
based cache attacks

Public Deliverable

�‹���&�R�S�\�U�L�J�K�W���%�H�Q�H�I�L�F�L�D�U�L�H�V���R�I���W�K�H��MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.19 Page 18 of 49

4 Architecture
This chapter is split into subsections to allow for better understanding of the individual
components. At first the overall architecture is presented to explain how all the involved
components interact with each other. In the following subsection sKVM and OSv - sKVM is
the new improved hypervisor and OSv (the light weight guest operating system) - are further
explained. The third subsection deals with the security concerns involved presenting an
overview over the possible attacks and how these can be addressed to prevent them.

The last part elaborates how we will integrate MIKELANGELO into a Cloud or an HPC
environment. The approaches for the integration into Cloud and HPC infrastructure are further
divided into two separate subsection, explaining the unique aspects, limitations and
advantages.

4.1 Overall Architecture
The global architecture of MIKELANGELO is intended to be as modular as possible and
easily expandable. In addition to the modular approach MIKELANGELO will focus on cross-
level optimizations to be as flexible as possible concerning application execution. Flexible in
terms of actual HPC hardware environment is not relevant as it is abstracted by an hypervisor.
Further, to improve the overall performance of applications running inside VMs,
corresponding modifications will be applied to both sKVM and OSv. Both technologies will
be interchangeable with their counterpart, sKVM with KVM and OSv with any Linux guest.
So OSv will also remain fully compatible with KVM, and sKVM runs any other guest
operating systems KVM is able to. However, only when both are combined they will provide
the desirable benefits in full extent: less CPU-overhead, improved I/O as well as stronger
security. These cross-layer optimisation will also serve as a demonstrator for other users on
how dedicated solutions may be used to achieve highest possible improvements.

Figure 1: Overall Architecture

As shown in Figure 1 the hypervisor (s)KVM runs on a host system which manages access to
the physical hardware. On top of the hypervisor runs at least one guest operating system like
i.e. Ubuntu (Linux) or OSv.

Public Deliverable

�‹���&�R�S�\�U�L�J�K�W���%�H�Q�H�I�L�F�L�D�U�L�H�V���R�I���W�K�H��MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.19 Page 19 of 49

4.2 The sKVM Architecture
The sKVM architecture is aimed at enabling HPC (High-Performance Computing) and big
data providers to virtualize their workloads. This abstraction of the actual hardware provides
the benefit of a highly flexible design in terms of compile once run everywhere. To
accomplish this challenging goal we are developing an optimized KVM-based hypervisor,
sKVM, with several improvements to both I/O performance and security.

The I/O improvements will be comprised of two independent enhancements. The first will
address the paravirtual model in KVM which is the most prevalent technique today for
providing virtual I/O devices to VM guests. sKVM targets on both, traditional clouds built
with commodity hardware as well as highly specialized hardware. Cloud infrastructures
supporting fast Network Inter-Connects (NICs) like Infiniband and protocols for remote
memory access like RDMA, will benefit from the second I/O-improvement of sKVM: a
lightweight RDMA virtualisation layer, using an in-guest virtio-rdma front-end virtual driver.
It provides different network interfaces for the guest application and drives the
communication over Infiniband network or within the same host using shared memory. For
clouds using commodity hardware the sKVM stack offers remarkable speed-up in comparison
to KVM by using the IOcm component. IOcm (I/O core manager) provides dynamic
utilization of cores efficiently. For the workload scheduling the behaviour of the particular
workload is considered, i.e. compute intensive vs. I/O intensive loads. sKVM also covers
security enhancements in regards to leakage of private data by preventing cache side channel
attacks with the help of SCAM, a side channel attack monitor.

Public Deliverable

�‹���&�R�S�\�U�L�J�K�W���%�H�Q�H�I�L�F�L�D�U�L�H�V���R�I���W�K�H��MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.19 Page 20 of 49

4.2.1 Main Structure of sKVM

Figure 2: sKVM Architecture

Figure 2 illustrates the sKVM architecture design of all three major components. sKVM is
based on KVM, which is implemented as a Linux kernel module that extends the kernel with
hypervisor capabilities, and is driven by a QEMU user process. Virtio provides an abstraction
for a set of common (emulated) devices in a paravirtualised hypervisor. The guest operating
system implements virtio drivers which are called, for example virtio-net and virtio-blk. The
diagram also presents a new virtio drive, virtio-rdma that will be implemented within
MIKELANGELO to support high speed communication using RDMA interconnects.

Linux/KVM implements an in-kernel implementation for virtio (paravirtual) devices called
vhost, currently supporting two paravirtual device types �² network (vhost-net) and block
device (vhost-block). IOcm is based on KVM vhost, as illustrated in Figure 2.

Virtio-rdma communicates with vhost-user, shown on the right of Figure 2. Vhost-user is a
new implementation based on the kernel vhost, and it has been implemented in the latest
versions of QEMU, Open VSwitch and DPDK. It works in the user space and uses kernel
vhost to initialize the necessary resources that are shared between the processes in the user
space.

For further details in regards to sKVM, e.g. in-depth description of the architecture of each
component, the challenges addressed by IOcm, virtio-rdma and attack-scenarios, please refer

Public Deliverable

�‹���&�R�S�\�U�L�J�K�W���%�H�Q�H�I�L�F�L�D�U�L�H�V���R�I���W�K�H��MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.19 Page 21 of 49

to the dedicated deliverable D2.13, The first sKVM hypervisor architecture. The deliverable
also provides preliminary benchmarks that will be used for evaluating sKVM as a whole.

4.3 Guest Operating System (OSv) Architecture
MIKELANGELO runs an application on many virtual machines (VMs), also known as
�³�J�X�H�V�W�V�´���R�I���W�K�H���K�\�S�H�U�Y�L�V�R�U�����(�D�F�K���9�0���Q�H�H�G�V���D�Q���R�S�H�Uating system to run the application. VMs
on the cloud traditionally run the same operating systems that were used on physical
machines, such as Linux, Windows, or *BSD. But the features that made these operating
systems desirable on physical machines, are losing their relevance: Examples include a
familiar single-machine administration interface, the support of multi-user and multiple
applications, and the support for a large selection of hardware. On the other side, different
features are important for MIKELANGELO: The VM's operating system needs to be fast,
small, and easy to administer at large scale.

OSv is a new operating system designed specifically for running a single application on a
VM. OSv is limited to a single application because the hypervisor already supports isolation
between VMs, so we believe an additional layer of isolation inside a VM is redundant and
hurts performance. As a result, OSv does not support processes with separate address spaces
(for example, the fork() call is not supported) but does fully support multi-threaded
applications on multi-core VMs.

�2�6�Y�¶�V���G�H�V�L�J�Q���V�W�H�P�V���I�U�R�P���W�Z�R���P�D�L�Q���J�R�D�O�V��

1. Run existing applications, faster.
The goal here is to take unmodified (or only slightly modified) Linux executables, and
have them start faster and run faster on OSv than they did on Linux.

2. Provide new APIs for writing even faster applications.
�7�R�G�D�\�¶�V���/�L�Q�X�[���$�3�,�V�����3�2�6�,�;���V�\�V�W�H�P���F�D�O�O�V�����V�R�F�N�H�W���$�3�,���� �H�W�F������ �Z�H�U�H���I�R�U�P�H�G���E�\�� �G�H�F�D�G�H�V��
of Unix legacy, and some aspects of it are inherently inefficient. OSv cannot
dramatically improve the performance of applications which use those APIs. So our
second goal is to propose new APIs which will offer applications, that are rewritten to
use them, dramatically better performance than unmodified Linux applications.

In this section we will provide a high-level description of the architecture of the guest
operating system and components related to it based on OSv. Following diagram shows the
main components of OSv. Components marked with orange colour have been identified to be
either extended/updated or implemented within MIKELANGELO project.

Public Deliverable

�‹���&�R�S�\�U�L�J�K�W���%�H�Q�H�I�L�F�L�D�U�L�H�V���R�I���W�K�H��MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.19 Page 22 of 49

Figure 3: OSv in relation to the work packages

4.3.1 The OSv Kernel
The main focus for this new Kernel [8] was to build it as lightweight as possible, therefore it
is optimised for use in a virtual environment. General-purpose operating systems need to
work on thousands of different hardware devices, and thus have millions of lines of driver
code. But OSv only needs to implement drivers for the small number of (virtual) hardware
presented by the (s)KVM hypervisor used in MIKELANGELO. This consists only of a
minimal set of traditional PC hardware.

OSv does not support processes, but offers complete support for symmetric multi-processing
(SMP) VMs, and for threads, as almost all modern applications use them. Our thread
scheduler multiplexes N threads on top of M CPUs (N may be much higher than M), and
guarantees fairness (competing threads get equal share of the CPU) and load balancing.
Thread priorities, real-time threads, and other user-visible features of the Linux scheduler are
also supported, but the implementation is quite different from that of Linux. One of the
consequences of our simpler and more efficient scheduler implementation is that in OSv,
�F�R�Q�W�H�[�W�� �V�Z�L�W�F�K�H�V�� �D�U�H�� �V�L�J�Q�L�I�L�F�D�Q�W�O�\�� �I�D�V�W�H�U�� �W�K�D�Q�� �L�Q�� �/�L�Q�X�[���� �Q�D�P�H�O�\�� �L�W�¶�V�� ���� �W�R�� ������ �W�L�P�H�V�� �I�D�V�W�H�U��
depending on the regarded scenario.

Additionally other parts, like the memory management or the thread scheduler, are also
optimized to get the maximum performance possible form OSv itself.

Public Deliverable

�‹���&�R�S�\�U�L�J�K�W���%�H�Q�H�I�L�F�L�D�U�L�H�V���R�I���W�K�H��MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.19 Page 23 of 49

4.3.2 The Seastar Library
Seastar is a newly developed C++14 library, which can be used either in OSv or in Linux.
Seastar is not part of the kernel, but is nevertheless an integral part of the MIKELANGELO
guest operating system, needed by new applications that choose to use it to go beyond the
improvement OSv can offer to unmodified applications. It provides a novel application
programming interface (API) and also a different programming paradigm allowing
applications running on modern many-core machines a lock free and share-nothing design
which uses less overhead than classical threads.

4.3.3 OSv Image Packaging
There are different ways of compiling OSv and adding software into the image. One of them
is to package it with Capstan which is similarly convenient as building a Docker container but
creating full virtual machine images. Capstan also allows you to upload the images you
compose to a site, to download pre-composed images, and also to run these images.

At this point in time there are already ~70 different applications ready for use with OSv. A
multitude of run-time environments are already supported allowing most apps to run in OSv
without too many modifications. The OSv applications Git repository provides recipes for
building application images from source code or pre-compiled binaries. One of the focuses of
the guest operating system work within MIKELANGELO will be to improve the packaging
workflow allowing (non-technical) users to compose virtual images from small and already
available building blocks, such as the kernel itself, application packages (for example, the
Bones app, the OpenFOAM framework, etc.), data packages (small because large datasets are
typically deployed to some sort of shared storage) and additional configurations. Beyond
existing packages users will be allowed to package their components manually, typically be
recompiling software packages.

4.4 Security Mechanisms

4.4.1 SCAM Architecture
The following diagram provides a high-level view of our proposed architecture for SCAM --
the sKVM Side-Channel Attack Monitoring/Mitigation module. The execution of this module
will be controlled by a switch in sKVM, so that sKVM can decide at runtime whether SCAM
operates, thus improving security and reducing performance, or not. The role of SCAM is to
provide a varied granularity of monitoring, profiling, and mitigation capabilities, in order to
identify VMs that are attempting to exert information from co-located VMs via cache side-
channels. The main modules of SCAM are the following:

�” Monitoring module

�” Profiling module

�” Mitigation module

�” Kernel module

Public Deliverable

�‹���&�R�S�\�U�L�J�K�W���%�H�Q�H�I�L�F�L�D�U�L�H�V���R�I���W�K�H��MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.19 Page 24 of 49

Figure 4: SCAM modules

4.4.2 Monitoring
The goal of the monitoring module is to collect data on the cache accesses of the virtual
machines (VMs) running on the host. Since SCAM has no prior information as to the identity
of a potential attacking VM, the role of this module is to collect information on the cache
activity of the VMs running on the host, in an attempt to extract traces of VM cache activities
that can later be profiled. The information gathered by the monitoring module is passed on to
the profiling module, in order to estimate whether the activity of the monitored VM is deemed
benign or hostile.

4.4.3 Profiling
The role of the profiling module is to analyse the pattern of cache accesses of each VM and
assign a score that represents the risk that a VM is conducting a cache-based side-channel
attack. The input of the profiling module is the data that the monitoring module collects on
each VM. The profiling module may trigger the operation of the mitigation module. The basis
for profiling VMs is a common characteristic of all currently known cache-based side-channel
attacks, namely priming and probing specific cache-sets persistently. The profiling module
characterizes the risk posed by a VM by the degree of similarity between the cache accesses
of the VM and that of a generic attack.

4.4.4 Mitigation
The objective of the mitigation module is to reduce the effectiveness of cache-based side-
channel attacks and prevent them completely where possible. The module takes action based
on input from three possible sources. The profiling module may initialize mitigation action
against a VM based on the risk score that is assigned to that VM. In addition, user

Public Deliverable

�‹���&�R�S�\�U�L�J�K�W���%�H�Q�H�I�L�F�L�D�U�L�H�V���R�I���W�K�H��MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.19 Page 25 of 49

applications may request protection for specific pages in memory even without any indication
that there are malicious VMs running on the same hardware platform. This second option is a
form of cross-layer interaction that significantly reduces the overhead incurred compared to
mitigating side-channel attacks aimed at data extraction from arbitrary memory locations.
Finally, the mitigation module may be configured to perform some mitigation operations on
the whole system regardless of the presence of malicious VMs.

4.4.5 Kernel Module
The kernel module of SCAM provides the kernel services that the other modules require.
These include access to timers and counters, read and write permissions to the page table,
manipulation of VM scheduling, VM memory assignment and VM core assignment.

4.5 Cross -layer Optimisation
Previous sections presented individual components of the MIKELANGELO software stack,
namely the I/O optimised sKVM, lightweight guest operating system OSv and advanced
security module preventing hostile VMs to collect information from others. Each of these
components provides significant improvements over existing solutions for running
applications in virtual environments. Direct integration of these components into cloud and
HPC management frameworks further excels the capabilities thereof.

These improvements will benefit all users of MIKELANGELO-based infrastructures making
it a form of a general purpose solution. However, one of the goals of MIKELANGELO
project is to go well beyond this providing special interfaces between components facilitating
communication between them. This will further steer the performance and security
optimisations of the whole stack. An example of such interface is between security
component of sKVM and OSv or even the application itself. The latter is allowed to mark
specific regions of code that either contain sensitive information or manipulate such
information triggering the SCAM component to perform monitoring and mitigation, if
necessary. Similarly, the application or OSv could notify the hypervisor of the expected
change in I/O request rate allowing sKVM to accommodate cores allocated for I/O operations.
sKVM could alternatively notify OSv whenever number of I/O cores changes.

Potential cross-layer optimisations will be analysed in full detail in the next stages of the
MIKELA NGELO project. The interface and communication between components will be
based on standard communication protocols used in context of virtualisation. This will allow
other vendors to use these interfaces to activate additional features of MIKELANGELO
components.

4.6 Integration into Infrastructures
This section describes the integration of the MIKELANGELO stack into infrastructures for
Cloud and HPC computing. These two types of infrastructure are the main targets of
MIKELANGELO as they can benefit most from improved I/O performance and security of
virtual machines. First, we describe the integration of the new MIKELANGELO components
with OpenStack as a widespread solution for cloud computing. Second, we describe the
integration of most of the components into batch scheduler systems for the application in HPC
clusters.

Public Deliverable

�‹���&�R�S�\�U�L�J�K�W���%�H�Q�H�I�L�F�L�D�U�L�H�V���R�I���W�K�H��MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.19 Page 26 of 49

4.6.1 Clouds
This section describes the integration of the MIKELANGELO architecture into the GWDG
cloud infrastructures in general and into the GWDG cloud infrastructure as a specific
example. First we describe the cloud architecture, which is based on a production-ready
OpenStack installation. Second, we describe the specific integration of MIKELANGELO
components into the cloud architecture.

The deployment to be used as reference architecture of a cloud is shown in Figure 5. This
architecture is based on a scalable high-availability deployment of OpenStack. In the
MIKELANGELO project, the cloud systems are provided by GWDG. There are two types of
deployments, which are connected and offered. The first one is a full cloud deployment,
which will be used to test MIKELANGELO in a production setting. The second deployment
is a test-bed with fewer nodes used to run integration tests via continuous integration with
Jenkins.

Figure 5: Scalable high-availability deployment of OpenStack

The full deployment runs on N nodes as compute nodes and with three controller nodes. Each
compute node is equipped with more than 128GB of memory and more than 1TB of local
storage. The controller nodes have fewer resources with less memory. All nodes are
connected by a dual-link 10 GBit data centre Ethernet system. The test bed for Y1 runs on
three compute nodes and one controller node. The compute nodes have 128GB of memory
1TB of local storage, and also dual-link data-centre Ethernet.

Public Deliverable

�‹���&�R�S�\�U�L�J�K�W���%�H�Q�H�I�L�F�L�D�U�L�H�V���R�I���W�K�H��MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.19 Page 27 of 49

The cloud integration regards the integration of MIKELANGELO components with a
mainstream middleware for cloud computing. Our choice is OpenStack due to its widespread
use, level of maturity, and since it is already in use at GWDG.

The software setup for the cloud is illustrated in Figure 5. The two controller nodes run on
dedicated hosts. The controller hosts all of the essential services, which are run in Linux
containers. The two controller nodes are completely mirrored and equipped with HAProxy for
load balancing. Most of the services in the controller nodes can be used in active-active node.
Only the HAProxy itself and MongoDB are run in active-passive mode. Finally, caching and
networking agents are specific to the controller nodes and thus their state is not mirrored. The
compute nodes run the Nova component of OpenStack with a layer 3 networking agent. The
Nova services are installed directly on the hosts to reduce any overhead. The whole
deployment is automated by using configuration management with Puppet [10].

The cloud integration poses several requirements to MIKELANGELO components and needs
to fulfil other requirements to ease the integration with big data and HPC services. The
requirements posed by the cloud integration can be summarised as the need to keep interfaces
of underlying components backwards compatible as much as possible. Three of the most
important requirements in this context refer to sKVM and OSv. First, sKVM should be able to
run in an OpenStack environment with as few changes to libvirt, Nova and other components
as possible. Changes to the whole system should be contained to the lower layers of the
architecture. Second, sKVM should be able to run mainstream operating systems as guest OS.
In specific, Ubuntu, CentOS and similar OSs need to be supported. Third, OSv needs to be
able to run smoothly in OpenStack on top of sKVM and KVM.

Figure 6 shows the complete cloud architecture in MIKELANGELO. The main changes to a
standard OpenStack-deployment regard the extensions to KVM, the use of OSv images and
application management with OSv, and the integrated monitoring and instrumentation
framework.

Public Deliverable

�‹���&�R�S�\�U�L�J�K�W���%�H�Q�H�I�L�F�L�D�U�L�H�V���R�I���W�K�H��MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.19 Page 28 of 49

Figure 6: Complete cloud architecture of MIKELANGELO

From the current point of view several changes to achieve cloud integration can be foreseen to
existing components. These changes will require further changes to libvirt, which finally will
also require changes in OpenStack Nova. These changes will require configuration data to be
read and sending commands to set up, start and stop the I/O devices in sKVM. Additionally
Intel's instrumentation and monitoring framework will be set up to collect data from custom
probes. There will additionally be an integration with OpenStack Ceilometer, to allow a native
interaction with data collected by OpenStack. Finally, OSv will receive an additional
integration for application management. This management will be based on composing new
OSv images from existing ones. These new images will contain custom configuration and
new services. The new images will be managed in a logically dedicated image repository,
potentially also supporting OpenStack Glance.

The cloud integration is expected to receive revision during the following project phases.
Once the implementation progresses new issues and new ways to improve the integration are
expected to arise.

4.6.2 HPC

Public Deliverable

�‹���&�R�S�\�U�L�J�K�W���%�H�Q�H�I�L�F�L�D�U�L�H�V���R�I���W�K�H��MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.19 Page 29 of 49

For the HPC integration HLRS has set up a small test-bed cluster consisting of 14 compute
nodes mirroring its production environment. The test-bed cluster consists of a dedicated front-
end accessible from the outside. There is Infiniband connectivity available for fast data
exchange between compute nodes and a shared $HOME file-system amongst compute nodes,
as it is present in common HPC clusters.

The software in use on HLRS' production environments to schedule batch jobs is Moab
(commercial license) in combination with the resource manager Torque (open source). Since
Moab is not relevant as the job deployment and execution which is solely in the responsibility
of the resource manager (Torque), there is no need for it. Torque provides simple scheduling
functionality covering our needs completely. So in all important aspects of HPC production
environments are mirrored, enabling us to validate the new concepts.

Our integration plan is divided into the set-up and configuration of the test cluster

environment and subsequent to this, the execution of the bones simulation to verify the
functionality of the test-bed is as intended. Followed by an execution in virtual machines
which is then compared to the bare metal execution to identify performance issues and
bottlenecks to be focused on in the hypervisor's development.

The test-bed is already able to run traditional bare-metal batch jobs and we are currently
extending this functionality towards the execution of batch-jobs running within virtual
machines on top of a hypervisor.

This will be achieved by making use of Torque's Prologue and Epilogue scripts which are
executed before and after a batch job runs. These will be utilized to boot the virtual machines
(VMs) in which the HPC application runs, and to tear them down afterwards.

The clear advantage of this intended set-up is the ability to compare key performance
indicators (KPIs) gathered from bare metal execution with ones gathered from execution on
virtual nodes.

Figure 7: HPC cluster testbed overview

Public Deliverable

�‹���&�R�S�\�U�L�J�K�W���%�H�Q�H�I�L�F�L�D�U�L�H�V���R�I���W�K�H��MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.19 Page 30 of 49

Figure 8: HPC Architecture overview

Further, the execution of batch jobs within virtual nodes has the huge advantage to be
�L�Q�W�H�U�R�S�H�U�D�E�O�H�� �L�Q�� �W�H�U�P�V�� �R�I�� �³�E�X�L�O�G�� �R�Q�F�H���� �U�X�Q���H�Y�H�U�\�Z�K�H�U�H�´���� �7�K�H�� �R�Q�O�\�� �U�H�T�X�L�U�H�P�H�Q�W���O�H�I�W�� �W�R deploy
an HPC application ported to the VM based approach to any HPC cluster is a hypervisor able
to execute the VM.

This is a remarkable achievement compared to the traditional way where users were forced to
compile their application each time the hardware or software environment has changed taking
into consideration not only locations of binaries, available kernels and library versions, but
also modifying build scripts or source code to be compatible with vendor specific compilers
(for example: gnu compiler, Intel compiler, Cray compiler, etc.).

Public Deliverable

�‹���&�R�S�\�U�L�J�K�W���%�H�Q�H�I�L�F�L�D�U�L�H�V���R�I���W�K�H��MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.19 Page 31 of 49

It can be very challenging for software vendors to support users without access to identical
set-ups with their issues. Further, experts are currently not able to provide to end-users a
common straight forward route to successfully run HPC applications in any HPC hardware
environment regardless of its hardware and software provided. Thus, HPC application
developers need to touch their build scripts and code each time as well, when they want to test
it in different cluster environments. And in case an HPC environment is not able to cover an
application's specific needs for certain kernel, driver or library versions, it is not even possible
to be ran at all.

The virtualized approach of MIKELANGELO solves all these disadvantages, besides others,
without any additional work or deeper technical knowledge required for the end-user.

These challenges can be resolved by a simple work flow. An end user fetches a standard VM
from our stack, builds his HPC application in a predefined environment without the need to
consider unique hardware properties and features. It would even enable them to develop HPC
applications on a usual desktop PC not even close to HPC environments and then upload and
run it in such without any modification.

Regarding performance, which in general suffers when running code in virtual machines, it is
essential to reduce the overhead for execution as far as possible. This is addressed by an
optimized hypervisor (sKVM) and operating system (OSv).

Public Deliverable

�‹���&�R�S�\�U�L�J�K�W���%�H�Q�H�I�L�F�L�D�U�L�H�V���R�I���W�K�H��MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.19 Page 32 of 49

5 Conclusions
We have shown, in many aspects, how the MIKELANGELO project will improve the
development process and deployment of HPC applications as well as their execution. It will
provide the advantage to run compiled code on any HPC infrastructure without deeper
knowledge about its unique (and typically internal) characteristics. Our approach is based on
the abstraction of HPC hardware by a hypervisor. The hypervisor is in general installed,
configured and tuned by the infrastructure owner who best knows the hardware. Within the
MIKELANGELO project the hypervisor sKVM, an improved version of KVM, is being
developed offering very low overhead for virtualisation. On top of that hypervisor the light-
weight operating system OSv runs, which executes the application to run. OSv causes very
low overhead in comparison to virtualized standard Linux operating systems, making our
approach in combination with sKVM feasible in first place for HPC production environments.

The presented approach will enable HPC application developers to write and test their code
on commodity hardware, like common desktop PCs, and then deploy it onto HPC
infrastructures without any additional work. Additionally resource providers will be enabled
to deploy new applications within minutes instead of hours or days, opening an opportunity
for new service levels and end-user support. Further, it will enable users to run HPC
applications without the need of compiling them on their own, which can be challenging in
some cases.

Instead of wasting time to compile and install an application code, all they need to do is to
fetch some prepared application image and execute it on top of a hypervisor, e.g. the
improved sKVM. And then run it without any knowledge about optimization features, the
actual hardware environment or other performance influencing aspects. These are completely
abstracted and shift the requirement of HPC expert knowledge from end-users to HPC
resource providers.

We are confident MIKELANGELO will provide significant simplification of HPC application
development and usage of HPC environments in general. This will drive completely new user
groups not familiar with HPC into this domain opening massive opportunities for novel
business models for end-users and infrastructure providers. And at the same time reduce the
workload on the HPC resource provider side for offering additional HPC applications
requested by end-users.

Public Deliverable

�‹���&�R�S�\�U�L�J�K�W���%�H�Q�H�I�L�F�L�D�U�L�H�V���R�I���W�K�H��MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.19 Page 33 of 49

6 References and Applicable Documents
[1] Xen Project Homepage, http://www.xenproject.org/

[2] KVM Homepage, http://www.linux-kvm.org/

[3] OpenFoam Homepage, http://www.openfoam.com/

[4] Seastar Homepage, http://www.seastar-project.org/

[5] Hadoop Homepage, https://hadoop.apache.org/

[6] Spark Hompeage, http://spark.apache.org/

[7] OSv Homepage, http://osv.io/

[8] OSv - Optimizing the Operating System for Virtual Machines ,

http://www.eecs.harvard.edu/cs261/papers/kivity14.pdf

[9] RR. �5�X�V�V�H�O�O�����³�Y�L�U�W�L�R�����7�R�Z�D�U�G�V���D���'�H-�)�D�F�W�R���6�W�D�Q�G�D�U�G���)�R�U���9�L�U�W�X�D�O���,�������2���'�H�Y�L�F�H�V���´��ACM

SIGOPS Oper. Syst. Rev., vol. 42, pp. 95�±103, 2008.

[10] �*�:�'�*�¶�V���3�X�S�S�H�W���U�H�F�H�L�S�W�V����https://github.com/gwdg/puppet-openstack-cloud

[11] The MIKELANGELO project, http://www.mikelangelo-project.eu/

http://www.xenproject.org/
http://www.linux-kvm.org/
http://www.openfoam.com/
http://www.seastar-project.org/
https://hadoop.apache.org/
http://spark.apache.org/
http://osv.io/
http://www.eecs.harvard.edu/cs261/papers/kivity14.pdf
https://github.com/gwdg/puppet-openstack-cloud
http://www.mikelangelo-project.eu/

Public Deliverable

�‹���&�R�S�\�U�L�J�K�W���%�H�Q�H�I�L�F�L�D�U�L�H�V���R�I���W�K�H��MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.19 Page 34 of 49

Appendix A – Use Case Questionnaire

The purpose of this questionnaire is to gain insight into four use cases we are going to use to
demonstrate advantages of using the entire MIKELANGELO stack for various types of HPC and
Cloud applications. We must focus on those topics we have already outlined in the Description of
Action, in particular (taken from measured improvements in DoA)

1. increased efficiency in virtualized I/O,

2. increased application compatibility,

3. increased security of hypervisor, and

4. increased agility of application deployment.

At the moment, our understanding of use cases is very generic and does not provide enough
information to specify the hypervisor or guest OS architectures.

Please, do not copy from DoA. Properly filled questionnaire will define MIKELANGELO.

1 General information

1.1 Use case description

This summary must be detailed enough to help other partners understand the use case, its purpose and
the way it is executed in current environments.

Even though some use cases may not be well defined yet, this should not stop us from discussing so
feel free to write the description of alternatives here. This will help us decide together if necessary.

1.2 Current limitations

This section describes known limitations of the current approach, such as cumbersome initialisation,
lack of agility in the process, HPC provider lock-in, etc. Remember that one of the main results of
MIKELANGELO is HPC Cloud facilitating execution of HPC applications on top of modified cloud
stack.

1.3 Expectations for the MIKELANGELO stack

Be a visionary! How do you imagine ideal workflow of your use case? What do you think should be
modified in the existing setup for this to happen? Think of issues you already discussed in previous
section and how you would like to overcome them.

2 Technical information

The following sections will help offering appropriate testbed infrastructure for the execution and
benchmarking of use cases for the duration of the project. Answers will also provide inputs to the
general architecture design. Try to be as verbose as possible in all your answers and prepared for
additional questions. Answers may also contain ranges (for example, if your use case runs on 1
compute node, but should run on 8 to meet the maximum execution time allowed constraint, you
should specify this in your answer).

Public Deliverable

�‹���&�R�S�\�U�L�J�K�W���%�H�Q�H�I�L�F�L�D�U�L�H�V���R�I���W�K�H��MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.19 Page 35 of 49

Questions in the following sections are about the current status of your Use Case (AS-IS) and also
about how it should look like in the end (TO-BE). The later column should therefore be used for:

�” any thoughts on how/what you would like to experiment with, for example, increase the
number of (virtual) nodes, share nodes with other VMs, etc.

�” suggesting improvements of the current status, or

�” describing ideal (target) status of the feature.

2.1 Physical Hardware

ID Feature AS-IS TO-BE

2.1.1 Describe the number of nodes required

2.1.2 Describe the number of CPU cores required per
node

2.1.3 Describe the amount of memory required per
node

2.1.4 Describe the network access required
(bandwidth, network type etc.)

2.1.5 Describe whether nodes are used exclusively by
this use case.

2.1.6 Describe any requirements or opportunities for
particular hardware support (e.g. Encryption
support, Accelerators, Interconnects, ...)

2.1.7 Describe any monitoring/instrumentation
facilities accessible in the hardware

2.2 Software

ID Feature AS-IS TO-BE

2.2.1 Describe how many processes are (usually)
executed

Public Deliverable

�‹���&�R�S�\�U�L�J�K�W���%�H�Q�H�I�L�F�L�D�U�L�H�V���R�I���W�K�H��MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.19 Page 36 of 49

2.2.2 Describe how many threads are (usually)
executed

2.2.3 Describe the required runtime environment
���Q�D�W�L�Y�H�����-�D�Y�D���9�L�U�W�X�D�O���0�D�F�K�L�Q�H�����*�R�����Q�R�G�H���M�V�����«��

2.2.4 Describe required software packages:
�K�\�S�H�U�Y�L�V�R�U�����.�9�0�����;�H�Q�����«��

Specify versions if necessary

2.2.5 Describe required software packages: cloud
�S�O�D�W�I�R�U�P�����2�S�H�Q�6�W�D�F�N�����2�S�H�Q�1�H�E�X�O�D�����«��

Specify versions if necessary

2.2.6 Describe required software packages: compilers
(gcc, icc, mpich, ...)

Specify versions if necessary

2.2.7 Describe required software packages:
applications and/or libraries (OpenFOAM,
�2�S�H�Q�0�3�,�����«��

Specify versions if necessary

2.2.8 Describe any other required software packages

Specify versions if necessary

2.2.9 Describe special requirements for the guest OS
(only answer in case your UC has already been
deployed in Cloud).

Specify versions if necessary

2.2.10 Detail any licensing constraints

2.2.11 Describe any monitoring/instrumentation
facilities accessible in the software stack (base
OS, hypervisor, guest OS, application)

Public Deliverable

�‹���&�R�S�\�U�L�J�K�W���%�H�Q�H�I�L�F�L�D�U�L�H�V���R�I���W�K�H��MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.19 Page 37 of 49

2.3 Execution

ID Feature AS-IS TO-BE

2.3.1 Describe interdependencies between
processes/threads (for example, are processes
working on independent subset of data or should
the final step of the process reduce individual
results, etc).

2.3.2 Describe inter-process communication
mechanisms used

2.3.3 Describe how cases are configured or
parameterised (for example, OpenFOAM may
execute arbitrary model, but we need to provide
the model and the input data to the engine
somehow).

2.3.4 Describe any possible KPIs/monitoring
requirements for the use case. Consider:

�” Performance �± network, I/O, CPU,
�P�H�P�R�U�\�����«

�” Non-functional / functional aspects

�” Each layer: Application, Guest instance,
hypervisor, physical infrastructure, ...

�” Any expectations, possible weaknesses
or problem areas

2.3.5 Describe expected execution times

2.4 Data

ID Feature AS-IS TO-BE

2.4.1 Describe characteristics of input data (size, type,
format)

2.4.2 Describe characteristics of output data (size,

Public Deliverable

�‹���&�R�S�\�U�L�J�K�W���%�H�Q�H�I�L�F�L�D�U�L�H�V���R�I���W�K�H��MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.19 Page 38 of 49

type, format)

2.4.3 Describe any data transfers required - before,
during and after execution

2.4.4 Describe data storage requirements - before,
during and after execution

2.4.5 Describe how data is shared between running
instances

2.4.6 Describe any sensitivities regarding data
(consider the data for the use case demonstration
as well as actual data when executed in the
production environment)

2.5 Security

ID Feature AS-IS TO-BE

2.5.1 Describe any constraints on all partners
accessing the data, or possibly sharing the data

2.5.2 Describe any country-specific requirements for
the data

2.5.3 Describe any data-centre-specific requirements
for the use case

2.5.4 Describe any possible limitations to remote
access to all instances for all partners to the use
case

2.5.5 Describe any encryption needs or opportunities
in the use case

Public Deliverable

�‹���&�R�S�\�U�L�J�K�W���%�H�Q�H�I�L�F�L�D�U�L�H�V���R�I���W�K�H��MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.19 Page 39 of 49

Appendix B - Collected Requirements

Requirements for Year 1
ID Category Title Description Resp. Party

104 App Integrate
NFS Client in
OSv

NFS client is required in particular by
HPC use cases allowing parallel workers
to read input data from and write results
to a common workspace. The NFS client
must support accessing of the NFS-based
files using normal system calls requiring
no modifications of HPC applications.
The OSv module implementing the NFS
client support must also allow
configurable mount point.

In the first phase, available open source
NFS client libraries will be analysed and
assessed for compliance with the HPC-
related requirements, maturity, licensing
constraints, supported functionalities and
extensibility. Furthermore, specific
requirements for these libraries that are
not supported by OSv will be studied in
order to chose optimal solution.

Cloudius

XLAB

39 App Big Data
stack running
in OSv and
sKVM

 GWDG

37 App OpenFOAM
running in
OSv and
sKVM

OpenFOAM allows running the same
input case, consisting of a 2D/3D model
and model and runtime configuration, in
a single process or in parallel executed
by a multitude of worker processes. The
parallel execution is supported by MPI.
The requirement must be satisfied in
several steps. First, the OpenFOAM
binaries must be compiled in a form
suitable for inclusion into an OSv virtual
machine allowing single process scenario
to be run successfully within OSv. The
parallel scenario must consider changes
necessary for bootstrapping of a series of
parallel workers that are normally run

XLAB

Pipistrel

Public Deliverable

�‹���&�R�S�\�U�L�J�K�W���%�H�Q�H�I�L�F�L�D�U�L�H�V���R�I���W�K�H��MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.19 Page 40 of 49

with the 'mpirun' command.

70 Guest
virtio-
rdma

DPDK
integration on
Guest

DPDK support/optimization on Guest for
supporting dpdk host driver on Host

HUA

71 Guest
virtio-
rdma

vhost-net
integration
with virtual
switch on
host

vhost-net must be able to connect to a
virtual switch

HUA

75 Guest
virtio-
rdma

Integration of
RDMA
components
with Ubuntu
Guest

Integration of RDMA components with
Ubuntu Guest

HUA

73 Guest
virtio-
rdma

Integration of
RDMA
components
with OSv
guest

 HUA

3 Hyperviso
r

Hypervisor
command
line API

QEMU/KVM command line API to
instantiate and manage VMs

IBM

7 Hyperviso
r

Multi vms
shared
memory
communicati
on

Hypervisor support / optimization for
multi VM on a single node, transferring
data in memory

HUA

14 Hyperviso
r

Hypervisor
API
backward
copatibility

Compatibility between sKVM and KVM
based on the interface

IBM

8 Hyperviso
r

Hypervisor
support for
CentOS guest

Hypervisor should be able to run CentOS
Guest

IBM

10 Hyperviso
r

Hypervisor
support for
Ubuntu guest

Hypervisor should be able to run Ubuntu
Guest

IBM

9 Hyperviso
r

Hypervisor
support for
OSv guest

Hypervisor should be able to run OSv
Guest

IBM

Cloudius

Public Deliverable

�‹���&�R�S�\�U�L�J�K�W���%�H�Q�H�I�L�F�L�D�U�L�H�V���R�I���W�K�H��MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.19 Page 41 of 49

64 Hyperviso
r virtio-
blk/scsi

Hypervisor
physical
block device
support

Hypervisor should be able to run guest
OS with a vhost-blk device backed by
SSD, Hard discs and other such devices

IBM

65 Hyperviso
r virtio-
blk/scsi

Hypervisor
virtual block
device
support

vhost-blk/scsi must work with vitual
block devices such as RAM-disc

IBM

67 Hyperviso
r virtio-
blk/scsi

virtio-scsi
support in
ubuntu guest

vhost-blk/scsi must work with Ubuntu
Guest

IBM

55 Hyperviso
r virtio-net

Hypervisor
virtual
network
conectivity

vhost-net should be able to connect to a
virtual switch

IBM

56 Hyperviso
r virtio-net

Hypervisor
physical
network
conectivity

vhost-net should be able to connect
directly to the physical NIC (through
macvtap)

IBM

58 Hyperviso
r virtio-net

Hypervisor
ubuntu guest
support

Hypervisor should be able to run Ubuntu
guest with a virtio-net virtual NIC

IBM

89 Hyperviso
r virtual
switch

Vhost
support in
Hypervisor's
user space

support for vhost-user HUA

88 Hyperviso
r virtual
switch

DPDK Poll
Mode Driver
support on
Host

support for DPDK Poll Mode Driver for
RDMA

HUA

18 Infrastruct
ure

Integration of
the modified
hypervisor
with
OpenStack

The modified hypervisor, sKVM, must
be packaged and integrated with the
OpenStack installation scripts allowing
end users to seamlessly install and/or use
both KVM and the improved version
sKVM. Further to extending the libvirt
API as part of req #101, this requires that
the libvirt changes are properly
addressed in the OpenStack layer
facilitating booting and controlling
virtual machines using sKVM
capabilities. The integration should allow
using Compute nodes of different

GWDG

XLAB

Public Deliverable

�‹���&�R�S�\�U�L�J�K�W���%�H�Q�H�I�L�F�L�D�U�L�H�V���R�I���W�K�H��MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.19 Page 42 of 49

hypervisor types interchangeably. The
first revision of this integration will focus
on unifying APIs, while the next versions
will also work on the integration with the
Dashboard (UI).

15 Infrastruct
ure

Hyperviser
Integration
for HPC

Change cluster setup to be able to use
(different) hypervisor. Integration into
Torque (=ResourceManager+Scheduler)
for starting HPC batch jobs inside VMs

HLRS

101 Infrastruct
ure

Libvirt
integration
for sKVM

Update the libvirt XML configuration
schema supporting components of the
modified hypervisor. The changes will be
introduced based on the developer scripts
for instantiating VMs during the
development and also on the mutual
decision about the appropriate
configuration options to be exposed to
end-users. The necessary changes will
comply with libvirt schema.

GWDG

XLAB

42 Monitorin
g

Capture
performance
metrics of
guest OS -
OSv

 Cloudius

41 Monitorin
g

Capture
performance
metrics of
host
Hypervisor -
sKVM

hypervisor needs to expose metrics to be
monitored by the monitoring system

IBM

Intel

40 Monitorin
g

Hardware
Monitoring

Monitoring system needs to be able to
capture performance metrics and health
status of physical hardware - e.g. via out-
of-band or operating system facilities

Intel

45 Monitorin
g

Monitoring
GUI

Monitoring system needs a GUI to allow
all captured metrics to be queried and
explored

Intel

43 Monitorin
g

Services/App
lications
Monitoring

Monitoring system needs to be able to
capture use-case specific metrics - e.g.
service or application performance data

Intel

Cloudius

use case
providers

Public Deliverable

�‹���&�R�S�\�U�L�J�K�W���%�H�Q�H�I�L�F�L�D�U�L�H�V���R�I���W�K�H��MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.19 Page 43 of 49

2 Monitorin
g

Hypervisor
Monitoring

Monitoring system needs to be able to
capture hypervisor metrics

Intel

IBM

25 OSv RDMA API
pass-through
support for
OSv

OSv support for Infiniband hardware
(virtual interfaces)

HUA

30 OSv RDMA core
driver
support for
OSv

OSv support for RDMA (core driver of
InfiniBand)

HUA

20 OSv OSv support
environment
variables

 Cloudius

23 OSv OSv support /
API for
monitoring
the instances

 Cloudius

29 OSv OSv support
multi-
threading

 Cloudius

35 OSv Extended
support for
functions
from
Linux/libc

 Cloudius

96 Security Intrusion
detection on
Hypervisor
level

Hypervisor mechanism to detect or
mitigate cross-VM information
extraction via side-channels

BGU

IBM

Intel

961 Security Prime&Probe
meta-attack
outside of
KVM

Implement a prime&probe attack in user
space (off KVM)

BGU

962 Security Prime&Probe
meta-attack
inside of
KVM

Implement a prime&probe attack in user
space (as a VM over KVM)

BGU

963 Security Target VM
implementati
on

Implement a target VM running SSL
authentication

BGU

Public Deliverable

�‹���&�R�S�\�U�L�J�K�W���%�H�Q�H�I�L�F�L�D�U�L�H�V���R�I���W�K�H��MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.19 Page 44 of 49

964 Security Collect
timing and
counter
information
from cache

Identify the available counters and
register that contain relevant information
for performing timing-based cache
attacks

BGU

Public Deliverable

�‹���&�R�S�\�U�L�J�K�W���%�H�Q�H�I�L�F�L�D�U�L�H�V���R�I���W�K�H��MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.19 Page 45 of 49

Requirements for Year 2 and Year 3
ID Category Title Description Resp. Party

1 Hypervisor Hypervisor / cloud middleware support
for contextualization of the virtual
instances

GWDG

4 Hypervisor Hypervisor installation instructions for
the modified hypervisor

IBM

5 Hypervisor Hypervisor installation package for
CentOS (RPM) or complient Tarball

GWDG

11 Hypervisor Hypervisor support for up to 256 GB
memory

IBM

12 Hypervisor Hypervisor support for up to 64 virtual
cores

IBM

13 Hypervisor Hypervisor installation package for
Ubuntu (DEB) or compliant Tarball

GWDG

16 Infrastruct
ure

 Infrastructure contextualization scripts
for the UCs

GWDG

XLAB

17 Infrastruct
ure

 OpenNebula adaptation for modified
Hypervisor

HLRS

21 OSv OSv optimization / special
communication to Hypervisor - Cross-
layer optimization

Cloudius

HUA

IBM

24 OSv OSv support for contextualization of VM
instances

Cloudius

XLAB

26 OSv OSv support for infrastructure pass-
through (maybe Infiniband, to be
specified)

HUA

27 OSv OSv support for message passing Cloudius

XLAB

28 OSv As OSv does not support multiple
processes, how can we integrate
standard-execution mechanisms with
multiple processes in OSv? A guideline,
work-around, examples are necessary?

Cloudius

31 OSv OSv support for RoCE HUA

Public Deliverable

�‹���&�R�S�\�U�L�J�K�W���%�H�Q�H�I�L�F�L�D�U�L�H�V���R�I���W�K�H��MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.19 Page 46 of 49

32 OSv OSv support for standard software
packages (to be specified)

33 OSv OSv support for up to 256 GB memory Cloudius

34 OSv OSv support for up to 64 cores Cloudius

36 OSv Support environment variables in
Capstan

XLAB

38 App Bones app must be running in OSv and
sKVM

HLRS

44 Monitoring Scalable infrastructure for consolidating
captured data

Intel

46 Monitoring Ability to dynamically adjust metrics
being captured

Intel

GWDG

XLAB

47 OSv Support for Ruby runtime environment XLAB

Cloudius

48 OSv Support for Go runtime environment XLAB

Cloudius

49 OSv Support for Node.js runtime environment XLAB

Cloudius

50 Infrastruct
ure

 OpenStack installation scripts must allow
installing sKVM instead of KVM

GWDG

XLAB

51 Infrastruct
ure

 Capstan must allow publishing of images
to OpenStack Image service

XLAB

52 Infrastruct
ure

 Capstan must allow using OpenStack
Image Service as base images to be
extended

XLAB

57 Hypervisor
virtio-net

 Integration with OSv guest Cloudius

59 Hypervisor
virtio-net

 Support for GbE hardware IBM

60 Hypervisor
virtio-net

 Support for 10GbE hardware IBM

61 Hypervisor
virtio-net

 Support for Infiniband hardware

Public Deliverable

�‹���&�R�S�\�U�L�J�K�W���%�H�Q�H�I�L�F�L�D�U�L�H�V���R�I���W�K�H��MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.19 Page 47 of 49

62 Hypervisor
virtio-net

 Increase scalability IBM

63 Hypervisor
virtio-net

 Better support for dynamic workloads IBM

66 Hypervisor
virtio-
blk/scsi

 Integration with OSv guest Cloudius

68 Hypervisor
virtio-
blk/scsi

 Increase scalability IBM

69 Hypervisor
virtio-
blk/scsi

 Better support for dynamic workloads IBM

72 Guest
virtio-rdma

 vhost-net must be able to connect
directly to the physical NIC (without)

HUA

74 Guest
virtio-rdma

 Cross-layer optimization with OSv guest HUA

IBM

Cloudius

76 Guest
virtio-rdma

 Support for GbE hardware HUA

77 Guest
virtio-rdma

 Support for Infiniband core driver HUA

78 Guest
virtio-rdma

 Abstract and support API in guest
application (socket, RDMA verbs,
DPDK and/or NetMap)

HUA

79 Guest
virtio-rdma

 Support for Poll Mode Driver for RDMA HUA

80 Guest
virtio-rdma

 Support RDMA verbs pass through HUA

81 Guest
virtio-rdma

 Optimize RDMA verbs pass through HUA

82 Guest
virtio-rdma

 Handle and process RDMA
communication buffer, event queues, and
requests

HUA

83 Guest
virtio-rdma

 Support rsocket API and optimize
traditional socket communication

HUA

84 Hypervisor
virtual

 RDMA device management HUA

Public Deliverable

�‹���&�R�S�\�U�L�J�K�W���%�H�Q�H�I�L�F�L�D�U�L�H�V���R�I���W�K�H��MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.19 Page 48 of 49

switch

85 Hypervisor
virtual
switch

 Translate and map the RDMA
communication buffer with TX/RX rings

HUA

86 Hypervisor
virtual
switch

 Direct the flows for inter-VM intra-Host
and inter-VM inter-Host communications

HUA

IBM

87 Hypervisor
virtual
switch

 Support for ivshmem for inter-VM intra-
Host communication

HUA

IBM

90 Hypervisor
virtual
switch

 Manage the verb calls that passed from
guest OS

HUA

91 Hypervisor
virtual
switch

 Event communication with virtio-rdma
and vhost-user

HUA

92 Hypervisor
virtual
switch

 Handle the RDMA completion event
queues and requests

HUA

93 Hypervisor
RoCE

 Integration with OSv HUA

94 Hypervisor
RoCE

 Integration with Ubuntu Guest HUA

95 Hypervisor
RoCE

 Support for GbE hardware HUA

97 Security OpenStack mechanism for VM
migration/assignment, balancing
performance and security

BGU

GWDG

XLAB

98 Security Hypervisor-OpenStack protocol to
exchange security assessment of VMs

BGU

GWDG

XLAB

99 Security Run-time toggle to stop operation of
hypervisor security mechanisms

BGU

100 App Cloud Bursting must be running in OSv
and sKVM

Cloudius

102 Infrastruct
ure

 Openstack Ceilometer support for sKVM Intel

Public Deliverable

�‹���&�R�S�\�U�L�J�K�W���%�H�Q�H�I�L�F�L�D�U�L�H�V���R�I���W�K�H��MIKELANGELO Project

Project No. 645402 MIKELANGELO Deliverable D2.19 Page 49 of 49

103 OSv Heat integration as Plugin

105 App NFS Server should be available in OSv
images

Cloudius

XLAB

	1 Introduction
	2 MIKELANGELO Goals
	2.1 Goals
	2.2 Line of Approach

	3 Requirements
	4 Architecture
	4.1 Overall Architecture
	4.2 The sKVM Architecture
	4.2.1 Main Structure of sKVM

	4.3 Guest Operating System (OSv) Architecture
	4.3.1 The OSv Kernel
	4.3.2 The Seastar Library
	4.3.3 OSv Image Packaging

	4.4 Security Mechanisms
	4.4.1 SCAM Architecture
	4.4.2 Monitoring
	4.4.3 Profiling
	4.4.4 Mitigation
	4.4.5 Kernel Module

	4.5 Cross-layer Optimisation
	4.6 Integration into Infrastructures
	4.6.1 Clouds
	4.6.2 HPC

	5 Conclusions
	6 References and Applicable Documents
	Appendix A – Use Case Questionnaire
	1 General information
	1.1 Use case description
	1.2 Current limitations
	1.3 Expectations for the MIKELANGELO stack

	2 Technical information
	2.1 Physical Hardware
	2.2 Software
	2.3 Execution
	2.4 Data
	2.5 Security

	Appendix B - Collected Requirements

