
Project No. 645402 

MIKELANGELO Deliverable D2.16 

 

 

Public deliverable 

© Copyright Beneficiaries of the MIKELANGELO Project Page 1 of 60 

 

 

 

 

 

MIKELANGELO 

D2.16 
 

The First OSv Guest Operating System 

MIKELANGELO Architecture 
 

 

Workpackage 2 Use Case & Architecture Analysis 

Author(s) Nadav Har’El Cloudius Systems 

Shiqing Fan Huawei 

Gregor Berginc XLAB 

Daniel Vladušič XLAB 

Reviewer Nico Struckmann HLRS 

Reviewer Holm Rauchfuss Huawei 

Dissemination 

Level 
Public 

 

Date Author Comments Version Status 

2015-09-08 Nadav Har'El Initial version V0.1 Draft 

2015-09-21 Shiqing Fan Additions of the vRDMA guest V0.2 Draft 

2015-09-18 Gregor Berginc, 

Daniel Vladušič 

Additions of the application 

packaging 

V0.3 Draft 



Project No. 645402 

MIKELANGELO Deliverable D2.16 

 

 

Public deliverable 

© Copyright Beneficiaries of the MIKELANGELO Project Page 2 of 60 

2015-09-24 Nadav Har'El Additions of the OSv and Seastar 

architecture, and the monitoring 

V0.4 Draft 

2015-09-26 Nadav Har'El Ready for review V0.5 In review 

2015-09-29 Nadav Har'El, 

Shiqing Fan, 

Gregor Berginc, 

Daniel Vladušič 

Updates, according to the review 

comments 

V0.6 In review 

2015-09-30 Gregor Berginc Document ready for submission V1.0 Final 

  



Project No. 645402 

MIKELANGELO Deliverable D2.16 

 

 

Public deliverable 

© Copyright Beneficiaries of the MIKELANGELO Project Page 3 of 60 

Executive Summary 

The MIKELANGELO project sets out to modify the traditional cloud stack in order to make it 

easier to run I/O-heavy and compute intensive HPC applications more efficiently and on 

different hardware platforms - Cloud and HPC environments.  

This deliverable describes the architecture of the Guest Operating System - OSv, chosen to be 

used as part of the overall MIKELANGELO technology stack. We describe its architecture, 

combined with baseline evaluation (including benchmarks). These show improvement when 

using OSv as the guest operating system over more traditional operating systems. 

Other foci of the document include the additions to the operating system - means to 

efficiently communicate between different virtual machines through RDMA mechanism, the 

SeaStar API that significantly improves the speed-ups through novel programming paradigm 

at the cost of re-programming of the original application and finally, the application 

packaging system design for OSv, supported by the overview of similar packaging systems. 

The deliverable produces the architecture of OSv, the measurements (baseline and speed-

ups), designs of the supporting systems and, as this is the first iteration of the deliverable, 

plans for future work. 
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1 Introduction 

The MIKELANGELO project builds a new cloud stack with the intention of making it easier to 

run I/O-heavy and compute intensive High-Performance-Computing (HPC) applications in 

the cloud, and additionally running these applications more efficiently. The overall 

architecture of the MIKELANGELO cloud stack includes the following components: 

1. The cloud management software, which we described in deliverable D2.19 [1]. 

2. The hypervisor sKVM, which makes it possible to run multiple virtual machines (VMs, 

also known as “guests”) on one physical machine (“host”). We described the 

architecture of sKVM in deliverable D2.13 [2]. 

3. The operating system running on each virtual machine. Its architecture is the topic of 

this deliverable. 

4. The actual application to run on the VMs. We discussed several example applications 

in the use-case deliverables D2.1 [3], D2.4 [4], D2.7 [5], and D2.10 [6], and in Section 7 

we’ll also consider additional simple benchmark applications. 

In this document, we describe the first architecture of the guest operating system layer of 

the overall MIKELANGELO cloud stack. The term “guest operating system” (or “guest OS”) is 

used for the operating system which runs on each individual VM, and implements the various 

APIs (Application Programming Interfaces) and ABIs (Application Binary Interfaces) which the 

various applications need. 

Today, most cloud and HPC applications are written to run on Linux, the same OS that was 

used earlier when running on physical machines. Some of the features that once made Linux 

desirable on physical machines, such as a convenient single-machine remote administration 

interface (ssh, config files, etc.) and support for a large selection of hardware, now became 

irrelevant or even a burden increasing Linux’s size, complexity, and boot time. Some of the 

traditional roles of the OS have become redundant on the cloud, and are now pure overhead: 

The most prominent example is Linux’s support for running multiple processes isolated from 

one another, and all of them isolated from the kernel. However, the cloud additionally offers 

isolation between the different VMs, so increasingly, users are deploying separate 

applications on separate VMs instead of separate processes on the same VM. This makes 

isolation inside a VM redundant, and a performance burden because it slows down context 

switches, system calls, and other parts of the kernel. 

Thus MIKELANGELO replaces the Linux kernel and system libraries by OSv, a new operating 

system designed especially for running efficiently on virtual machines, and capable of 

running existing Linux applications with certain limitations (namely, that the application is 

multi-threaded but not multi process, and that it is compiled as a relocatable executable). 

Compared to Linux, OSv has a smaller disk footprint, smaller memory footprint, faster boot 



Project No. 645402 

MIKELANGELO Deliverable D2.16 

 

 

Public deliverable 

© Copyright Beneficiaries of the MIKELANGELO Project Page 8 of 60 

time (sub-second), fewer run-time overheads, faster networking, and simpler configuration 

management. In Section 2, we describe in detail the architecture of OSv. 

In addition to efficiency, a second goal of the MIKELANGELO project is to simplify 

deployment of applications in the cloud. In Section 3, we outline MIKELANGELO’s application 

packaging and image composition mechanisms provided by the MIKELANGELO Package 

Manager (MPM). It will allow users to quickly and conveniently create new application 

packages from scratch or composing several application packages (libraries, components) 

into a target application. The section focuses on a definition of the package structure, 

metadata and tools provided by MPM with the main goal of building real virtual images 

suitable for execution in various cloud environments. 

While OSv allows running existing Linux applications, in Section 4 we note that certain Linux 

APIs, including the socket API, and certain programming habits, make applications which use 

them inherently inefficient on modern hardware. OSv can (and does) improve the 

performance of such applications to some degree, but rewriting the application to use new 

non-Linux APIs can bring even better performance. So in Section 4 we describe a new API, 

called “Seastar”, for writing new highly-efficient asynchronous network applications. We will 

demonstrate cases where although OSv brings some performance improvements, rewriting 

the application to use the Seastar API will bring significantly larger improvements. 

In Section 5, we present the guest-side architecture of the virtualized Remote Direct Memory 

Access (vRDMA) mechanism. We first described this mechanism in deliverable D2.13 [2], and 

it requires cooperating modification to both the hypervisor and the guest operating system; 

In this document we will naturally focus on the guest-side modifications, referring to D2.13 

[2] for some host-side details. The basic idea of vRDMA is to speed up communication 

between different guests by transparently replacing slow IP-based communications with 

more efficient mechanisms: RDMA (Remote Direct Memory Access) when the guests are on 

different hosts, or shared memory when the guests are co-located on the same host. 

Additionally, vRDMA provides efficient access to RDMA primitives directly for applications 

which can make use of them - including HPC applications which use MPI 2 one-sided 

communication, or MPI 3 remote memory access (RMA) primitives. 

In Section 6, we present OSv’s built-in monitoring capabilities: OSv provides a REST API (i.e., 

HTTP) server which allows convenient remote querying of a running guest for various 

statistics, including traditional Unix-like statistics (such as the list of threads, the VM’s uptime, 

the amount of runtime used by each thread, etc.) and additional OSv-specific low-level event 

counters such as the frequency of mutex lock attempts, context switches, memory allocations, 

and many more. 



Project No. 645402 

MIKELANGELO Deliverable D2.16 

 

 

Public deliverable 

© Copyright Beneficiaries of the MIKELANGELO Project Page 9 of 60 

In Section 7, we plan the evaluation of guest operating system, and present benchmarks 

which will help us compare its performance to that of the baseline guest operating system, 

Linux. 

In Section 8, we provide conclusions, and Section 9 we list the external references cited in 

this document.  
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2 OSv 

MIKELANGELO runs an application on many virtual machines (VMs), also known as guests of 

the hypervisor. VMs on the cloud traditionally run the same operating systems that were used 

on physical machines, such as Linux, Windows, or *BSD. But the features that made these 

operating systems desirable on physical machines, are losing their relevance: Examples of 

such irrelevant features include a familiar single-machine administration interface, the 

support of multi-user and multiple applications, and the support for a large selection of 

hardware. At the same time, different features are important for MIKELANGELO: The VM's 

operating system needs to be fast, small, and easy to administer at large scale. 

OSv is a new operating system designed specifically for running a single application on a 64-

bit x86 VM. OSv is limited to a single application because the hypervisor already supports 

isolation between VMs, so an additional layer of isolation inside a VM is redundant and hurts 

performance. As a result, OSv does not support fork() (i.e., processes with separate address 

spaces) but does fully support multi-threaded applications and multi-core VMs. 

The design of OSv, and that of Seastar described later in Section 4, stems from two main 

goals: 

1. Run existing applications, faster. 

The goal here is to take unmodified (or only slightly modified) Linux executables, and 

have them start faster and run faster on OSv than they did on Linux. 

Naturally, improvement in performance is to be expected only for applications which 

make heavy use of the operating system, e.g. I/O-intensive applications. Compute 

intensive applications which do little I/O cannot be accelerated by a better operating 

system. 

OSv is also smaller than Linux - less code, smaller disk images, and lower memory use. 

2. Provide new APIs for writing even faster applications. 

Today’s Linux APIs - POSIX system calls, socket API, etc. - were formed by decades of 

Unix legacy, and some aspects of them are inherently inefficient. OSv can improve the 

performance of applications which use these APIs, but not dramatically. So our 

second goal is to propose new APIs which will offer applications, that are rewritten to 

use them, dramatically better performance than unmodified Linux applications. 

For this, our operating system offers a new library which we call Seastar and is 

described in section 4 below. In the “Cloud Bursting” use-case we rewrite the 

Cassandra application using Seastar, and will show how performance will dramatically 

improve over the unmodified Cassandra. Further, Seastar offers general-purpose APIs 
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which will be useful to many kinds of asynchronous server applications. 

 

In the rest of this section we will provide a high-level description of the architecture of OSv’s 

core - its kernel and its Linux compatibility. A high level overview of this architecture is 

presented in Figure 1. Other subsequent sections are dedicated to additional components of 

the guest operating system: package management (Section 3), the non-Linux API “Seastar” 

(Section 4), vRDMA (Section 5), and monitoring (Section 6). 

 

 

 

 
Figure 1: High level architecture of the OSv kernel and its relations to other components of this work package. 

Orange components are those that will be implemented or improved within MIKELANGELO. 
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2.1 The Loader 

Like all x86 operating systems, OSv’s bootstrap code starts with a real-mode boot-loader 

running on one CPU which loads the rest of the OSv kernel into memory (a compressed 

kernel is uncompressed prior to loading it). The loader then sets up all the CPUs (OSv fully 

supports multi-core VMs) and all the OS facilities, and ends by running the actual application, 

as determined by a "command line" stored in the disk image. 

2.2 Virtual Hardware Drivers 

General-purpose operating systems such as Linux need to support thousands of different 

hardware devices, and thus have millions of lines of driver code. But OSv only needs to 

implement drivers for the small number of (virtual) hardware presented by the sKVM 

hypervisor used in MIKELANGELO. This includes a minimal set of traditional PC hardware (PCI, 

IDE, APIC, serial port, keyboard, VGA, HPET), and paravirtual drivers: kvmclock (a paravirtual 

high-resolution clock much more efficient than HPET), virtio-net (for network) and virtio-blk 

(for disk). 

As part of the vRDMA plan (see Section 5), we plan to add more drivers to OSv to support 

infiniband and RDMA, such as virtio-rdma and shared memory module. 

2.3 Filesystem 

OSv's filesystem design is based on the traditional Unix "VFS" (virtual file system). VFS is an 

abstraction layer, first introduced by Sun Microsystems in 1985, on top of a more concrete 

file system. The purpose of VFS is to allow client applications to access different types of 

concrete file systems (e.g., ZFS and NFS) in a uniform way. 

OSv currently has four concrete filesystem implementations: devfs (implements the “/dev” 

hierarchy for compatibility with Linux), procfs (similarly, for “/proc”), ramfs (a simple RAM 

disk), and most importantly - the ZFS filesystem. 

ZFS is a sophisticated filesystem and volume manager implementation, originating in Solaris. 

We use it to implement a persistent filesystem on top of the block device or devices given to 

us (via virtio-blk) by the host. 

During this project, we also plan to add the NFS filesystem implementation (i.e., an NFS 

client), to allow applications to mount remote NFS shared storage, which is a common need 

for HPC applications. 

2.4 The ELF Dynamic Linker 

OSv executes unmodified Linux executables. Currently we only support relocatable 

dynamically-linked executables, so an executable for OSv must be compiled as a shared 
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object (“.so”) or as a position-independent executable (PIE). Re-compiling an application as 

a shared-object or PIE is usually as straightforward as adding the appropriate compilation 

parameters (-fpic and -pic, or -fpie and -pie respectively) to the application's Makefile. 

Existing shared libraries can be used without re-compilation or modification. 

The dynamic linker maps the executable and its dependent shared libraries to memory (OSv 

has demand paging), and does the appropriate relocations and symbol resolutions necessary 

to make the code runnable - e.g., functions used by the executable but not defined there are 

resolved from OSv’s code, or from one of the other shared libraries loaded by the executable. 

ELF TLS (thread-local storage, e.g, gcc's "__thread" or C++11's thread_local) is also fully 

supported. 

The ELF dynamic linker is what makes OSv into a library OS: There are no "system calls" or 

system-call-specific overheads: When the application calls read(), the dynamic linker resolves 

this call to a call to the read() implementation inside the kernel, and it's just a function call. 

The entire application runs in one address space, and in the kernel privilege level (ring 0). 

2.5 C Library 

To run Linux executables, we needed to implement in OSv all the traditional Linux system 

calls and glibc library calls, in a way that is 100% ABI-compatible (i.e., binary compatibility) 

with glibc. We implemented many of the C library functions ourselves, and imported some of 

the others - such as the math functions and stdio functions - from the musl-libc project [29] - 

a BSD-licensed libc implementation.  

Strict binary compatibility with glibc for each of these functions is a essential, because we 

want to run unmodified shared libraries and executables compiled for Linux. 

2.6 Memory Management 

OSv maintains a single address space for the kernel and all application threads. It supports 

both malloc() and mmap() memory allocations. For efficiency, malloc() allocations are always 

backed by huge pages (2 MB pages), while mmap() allocations are also backed by huge 

pages if large enough.  

Disk-based mmap() supports demand paging as well as page eviction - these are assumed by 

most applications using mmap() for disk I/O. This use for mmap() is popular, for example, in 

Java applications due to Java's heap limitations, and also due to mmap()’s performance 

superiority over techniques using explicit read()/write() system calls because of the fewer 

system calls and zero copy.  

Despite their advantages, memory-mapped files are not the most efficient way to 

asynchronously access disk; In particular, cache miss (needing to read a page from disk, or 
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needing to write when memory is low) always blocks a thread, so it requires multiple 

application threads to context-switch. In Section 4, we explain that for this reason Seastar 

applications use  AIO (asynchronous I/O), not mmap(). 

2.7 Thread Scheduler 

OSv does not support processes, but does have complete support for SMP (multi-core) VMs, 

and for threads, as almost all modern applications use them. 

Our thread scheduler multiplexes N threads on top of M CPUs (N may be much higher than 

M), and guarantees fairness (competing threads get equal share the CPU) and load balancing 

(threads are moved between cores to improve global fairness). Thread priorities, real-time 

threads, and other user-visible features of the Linux scheduler are also supported, but 

internally the implementation of the scheduler is very different from that of Linux. A longer 

description of the design and implementation of OSv’s scheduler can be found in [7]. 

One of the consequences of our simpler and more efficient scheduler implementation is that 

in OSv, context switches are significantly faster than in Linux: Between 3 to 10 times faster. 

2.8 Synchronization Mechanisms 

OSv does not use spin-locks, which are a staple building block of other SMP operating 

systems. The is because spin-locks cause the so-called “lock-holder preemption” problem 

when used on virtual machines: If one virtual CPU is holding a spin-lock and then 

momentarily pauses (because of an exit to the host, or the host switching to run a different 

process), other virtual CPUs that need the same spin-lock will start spinning instead of doing 

useful work. The “lock-holder preemption” problem is especially problematic in clouds which 

over-commit CPUs (give a host’s guests more virtual CPUs than there are physical CPUs), but 

occurs even when there is no over-commitment, if exits to the host are common. 

Instead of spin locks, OSv has a unique implementation of a lock-free mutex, as well as an 

extensive collection of lock-free data structures and an implementation of the RCU (“read-

copy-update”) synchronization mechanism. 

2.9 Network Stack 

OSv has a full-featured TCP/IP network stack on top of the network driver like virtio-net 

which handles raw Ethernet packets. 

The TCP/IP code in OSv was originally imported from FreeBSD, but has since undergone a 

major overhaul to use Van Jacobson's "network channels" design [13] which reduces the 

number of locks, lock operations and cache-line bounces on SMP VMs compared to Linux’s 

more traditional network stack design. These locks and cache-line bounces are very 

expensive (compared to ordinary computation) on modern SMP machines, so we expect (and 
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indeed measured) significant improvements to network throughput thanks to the redesigned 

network stack. 

We currently only implemented the netchannels idea for TCP, but similar techniques could 

also be used for UDP, if the need arises. 

The basic idea behind netchannels is fairly simple to explain: 

● In a traditional network stack, we commonly have two CPUs involved in reading 

packets: We have one CPU running the interrupt or “soft interrupt” (a.k.a. “bottom 

half”) code, which receives raw Ethernet packets, processes them and copies the data 

into the socket’s data buffer. We then have a second CPU which runs the application’s 

read() on the socket, and now needs to copy that socket data buffer. The fact that two 

different CPUs need to read and write to the same buffer mean slow cache line 

bounces and locks, which are slow even if there is no contention (and very slow if 

there is). 

● In a netchannels stack (like OSv’s), the interrupt time processing does not access the 

full packet data. It only parses the header of the packet to determine which 

connection it belongs to, and then queues the incoming packets into a per-

connection “network channel”, or queue of packets, Only when the application calls 

read() (or poll(), etc.) on the socket is the TCP processing finally done on the packets 

queued on the network channel. When the read() thread does this, there are no cache 

bounces (the interrupt-handling CPU has not read the packet’s data!), and no need for 

locking. We still need some locks (e.g., to protect multiple concurrent read()s, which 

are allowed in the socket API), but fewer than in the traditional network stack design. 

2.10 DHCP Client 

OSv contains a built-in DHCP client, so it can find its IP address without being configured 

manually.  
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3 MIKELANGELO Package Management 

Support for running existing applications is one of the fundamental topics that all new 

systems and frameworks must pay special attention to. Having a great system only 

demonstrated with a series of laboratory use cases rarely satisfies the needs of the ever 

increasing demand of the market. This phenomenon has been observed on many occasions 

in the past, most recently in the mobile platform market (for example, Microsoft struggled 

hard to increase sales due to poor application ecosystem and BlackBerry lost almost its entire 

market share because it failed to adjust to changing needs). Platforms backed with powerful 

application ecosystems have evolved and radically changed the perception of end users 

bringing once dominating providers to their knees. 

OSv supports most of the standard libraries, however due to design decisions of OSv, some 

limitations have been imposed. This results in required adaptations of the applications, which 

may range from recompilation for the target operating system OSv to major patching of the 

application’s source code. Some of the most commonly used applications in cloud 

environments are already compatible with OSv. For example, memcached [8] caching system 

and Cassandra [14] database are not only supported in OSv but they also outperform Linux-

based execution. Given OSv is an operating system on its own, applications already packaged 

for other systems, typically do not directly work in it. As already said, they may require 

(usually minor) patches to source code and their build process. To facilitate the uptake of 

OSv, a number of commonly used applications [15] have been provided by Cloudius Systems 

and the community presenting different ways to overcome limitations. Although some of 

these applications serve primarily for demonstration purposes, the others are already suitable 

for production use, replacing existing deployments. 

To further improve the usefulness and uptake of OSv as the Cloud Operating System, 

MIKELANGELO project needs to improve the application packaging system for OSv and 

increase the number of available applications. Having readily available applications will 

significantly improve an essential part of the MIKELANGELO technology stack. 

This part of the document is organised as follows: first, we present the existing ways of 

application packaging in OSv. Then, we briefly describe the existing solutions on other 

operating systems and finally, present the initial version of the new OSv packaging system, 

called MIKELANGELO Package Manager (MPM for short), which uses the currently available 

requirements (stemming from the MIKELANGELO use-cases) and the patterns from the 

widely used and proven packaging systems to deliver a robust solution for OSv and 

MIKELANGELO project.  
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A note on terminology: in the context of OSv, the application packaging denotes the process 

of building a package, consisting of application and its context. However, given the OSv 

package management approaches were built organically, the deployment onto the virtual 

image is almost always part of the packaging. In our approach, we make the distinction 

between application packaging and application installation into OSv virtual image. 

3.1 Existing OSv Application Packaging 

3.1.1 Developer Scripts 

OSv source distribution comes with a shell script [16] for building images. The script, called 

scripts/build, builds the OSv kernel if it hasn’t been built before and puts it into a complete 

image ready for running as a virtual machine in, for example, KVM (using QEMU). The script 

may take an additional parameter of the form “image=<ModuleName>”, which is used to 

augment the raw OSv kernel image with the module named <ModuleName>. Multiple 

modules may be requested by separating them with commas, for example 

“image=<ModuleName1>,<ModuleName2>”. 

The script only works with local repositories (directories) of application modules which are 

specified in the config.json file of the OSv source tree, for example: 

    "repositories": [ 
        "${OSV_BASE}/apps", 
        "${OSV_BASE}/modules", 
        "/home/mike/mike-apps" 
    ] 

The above section uses two default locations for applications and modules as well as a third 

repository of MIKELANGELO related applications which is used internally by the project 

before applications are published. This allows very coarse and high-level separation of 

application packages based on their origin. 

To keep the repository small, application modules do not contain the actual application code. 

Instead they are described with a script that acquires the package or code from the Internet 

and builds a package into a form suitable for inclusion into an OSv based image. The recipe 

may include external files like static patches that need to be applied to the downloaded 

source code and provide OSv compliance. An example of a recipe for the OpenFOAM 

application can be seen in the following listing. 

#!/bin/sh 

 
VERSION=2.3.1 
BASEDIR=$PWD 
ROOTFS=$BASEDIR/ROOTFS 
SRCDIR=$BASEDIR/OpenFOAM-$VERSION 
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# Check whether we need to download the tarball 
if [ ! -f OpenFOAM-$VERSION.tgz ]; then 
    wget http://downloads.sourceforge.net/foam/OpenFOAM-$VERSION.tgz 
fi 
# Extract the target version 
tar zxf OpenFOAM-$VERSION.tgz 

 
## Patch bashrc to request debug compilation. 
#cd $SRCDIR 
#patch -p1 < $BASEDIR/patches/debug.patch 

 
# Set OpenFOAM's environment variables required to build the package. You should change 
this to cshrc if 
# that's the shell you are using. 
export FOAM_INST_DIR=$BASEDIR 
. $SRCDIR/etc/bashrc 

 
# First, compile the wmake used to build OpenFOAM sources. 
cd $SRCDIR/wmake/src 
make 

 
# Patch the solidMixtureProperties library 
cd $SRCDIR 
patch -p1 < $BASEDIR/patches/solidMixtureProperties-dependency.patch 

 
# Make the OpenFOAM library 
cd $SRCDIR/src 
./Allwmake 

 
# Apply the patch changing WMake options to position independent executables. 
cd $SRCDIR 
patch -p1 < $BASEDIR/patches/pie.patch 

 
# Go and build the simpleFoam 
cd $SRCDIR/applications/solvers/incompressible/simpleFoam 
wmake 

 
cd $BASEDIR 
mkdir -p $ROOTFS/usr/lib 
mkdir -p $ROOTFS/usr/bin 
mkdir -p $ROOTFS/openfoam 

 
cp $SRCDIR/platforms/$WM_OPTIONS/bin/simpleFoam  $ROOTFS/usr/bin 

 
ldd $SRCDIR/platforms/$WM_OPTIONS/bin/simpleFoam | grep -Po '(?<=> )/[^ ]+' | sort | uniq 
| grep -Pv 'lib(c|gcc|dl|m|util|rt|pthread|stdc\+\+).so' | xargs -I {} install  {} 
$ROOTFS/usr/lib 
# Also install libfieldFunctionObjects.so as it is not linked from the simpleFoam 
install $SRCDIR/platforms/$WM_OPTIONS/lib/libfieldFunctionObjects.so $ROOTFS/usr/lib 
install $SRCDIR/platforms/$WM_OPTIONS/lib/libforces.so $ROOTFS/usr/lib 

 
# Copy the configuration files and scripts to the image. 
cp -r $SRCDIR/etc $ROOTFS/openfoam 

 
echo " 
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/usr/bin/simpleFoam:${ROOTFS}/usr/bin/simpleFoam 
/usr/lib/**:${ROOTFS}/usr/lib/** 
/openfoam/etc/**:$ROOTFS/openfoam/etc/** 
" > usr.manifest 

Last step in the above listing shows the second fundamental part of the application package, 

namely the user manifest. This is a simple textual file describing how the application files 

should be copied into the virtual image. Each line of this file consists of the destination inside 

the image and the location on host computer building the image. A special marker (**) can 

be used denoting the folder and its content recursively. Paths are separated with a colon (:). 

The user manifest may be static or be generated using the script as in the case above. 

The final important part of the package is the definition of the command that should get 

executed whenever the virtual image is started. This is a Python script that uses a common 

API provided by OSv describing the module. For example, the following instructs the 

OpenFOAM virtual image to start the execution of a simpleFoam application passing one 

additional parameter. 

from osv.modules import api 

 
default = api.run("--env=WM_PROJECT_DIR=/openfoam /usr/bin/simpleFoam -case 
/openfoam/case") 

When appending more than one package to a virtual image, command lines of individual 

modules are merged into a single one resulting in all being executed. 

The build script is accompanied with an additional run script supporting many of the 

common options of the QEMU tool. The script is regularly updated with new requirements 

for the development of the OSv and is ideal for debugging and benchmarking of 

applications. 

A brief summary and evaluation of this method: 

● A BASH script (build) executes other scripts (BASH, Python), responsible for 

downloading, compiling, patching code. 

● Each of the user-generated scripts needs to provide user manifest, specifying the files 

and their locations in the virtual image. 

● Possible contextualisation using commands to be executed when virtual image is run. 

● Very useful for hacking and testing. 

● Very limited robustness (no validation of packages, no dependency management, 

resolution, etc.). 

● Lack of formalized structure and processes to be followed in building OSv complete 

virtual image.  

● Inappropriate for management of larger systems, production environments. 
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● Application patching and compilation intertwined with application installation into 

OSv virtual image. 

3.1.2 Capstan 

Capstan [17] was an attempt to provide an improved application building process. It was 

inspired by the well-known Docker [18] tool facilitating packaging of applications running in 

Linux containers. Although Capstan introduced other functionalities described later in this 

section, its main purpose is to simplify and standardize the structure of packages.  

The structure is specified within a file named Capstanfile [19] allowing the following settings: 

● base: name of the base OSv image used to augment with this package. It can either 

be a raw OSv kernel image (e.g. osv-base) or an image with some specific applications 

(for example cloudius/osv-openjdk for Java applications). 

● build: denotes the command to be executed when building an image. In most 

existing applications this results in calling the make command. 

● cmdline: the command to be executed when the image is started. 

● files: a map of files that are added to the base image. Each file in this list specifies the 

location in the target image and the location on the host machine. 

● rootfs: alternatively to the files option, Capstanfile can specify a path to the root 

directory on the host computer that is copied into the virtual image. Content of this 

directory is copied in its entirety to the root directory of the image. 

If Capstanfile specifies the files option, it is used in place of rootfs. However, if neither files 

nor rootfs are specified, Capstan looks for a folder named ROOTFS in the current directory 

and adds its content to the image. This default is the recommended best-practice, and most 

applications in the osv-apps collection [15] use it. 

An example of a Capstanfile for the OpenFOAM application is presented in the following 

listing. 

# Use the OSv base image with only OSv kernel and HTTP server. 
base: cloudius/osv-base 

 
# This is the command line that will be executed once the VM is started. 
cmdline: /usr/bin/simpleFoam -case /openfoam/case 

 
# This command will build the package. Since it is built from sources, we can use make. 
build: make 

 
# Explicitly name the folder containing all the files the application needs. 
rootfs: ROOTFS 

Besides support for building of virtual images, Capstan also supports running them in various 

local hypervisors (KVM/QEMU, VirtualBox and VMWare) as well as in the cloud (Google 
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Compute Engine). However, Capstan has only a very limited support for configuration of the 

target VM (for example, number of vCPUs, size of block device and RAM). 

Furthermore, Capstan also provides a very basic support for using RPM packages in OSv. If 

rpm-base option is used in Capstanfile, Capstan tries to download the RPM from a fixed base 

URL. Downloaded file is unpackaged and uploaded into the virtual image without any 

additional pre-processing such as applying patches or compiling the package. This is thus 

very limited in sense that most applications are not suitable for execution in OSv out of the 

box. 

One of the major drawbacks of the Capstan is that the image built by Capstan builds a ZFS 

partition of an inconveniently-fixed size (10 GB) and also deploys modules that are not always 

required for applications (e.g. HTTP server and shell). The base image thus dictates the size 

and initial content of the OSv image built based on this image. In contrast, the build script 

allows users to customise the size of the image by deploying the kernel and two additional 

tools to create new partitions and upload files to OSv image. 

A brief summary and evaluation of this method: 

● Formalizes the structure of the packaging process - improves over a BASH build 

script. 

● Improves the management of the user manifest, using files and rootfs concepts. 

● Possible contextualisation using commands to be executed when virtual image is run. 

● Can be used for building or simply combining and copying of applications into a 

complete package. 

● Very limited robustness (no validation of packages, no dependency management, 

resolution, etc.). 

● Inappropriate for management of larger systems, production environments. 

● Always creates the ZFS partition of fixed size (10Gb) and deploys additional tools in 

the virtual image, which may not be needed at all. 

● Application patching and compilation intertwined with application installation into 

OSv virtual image. 

3.2 Other Commonly Used Packaging Solutions 

This section briefly introduces some of the package management systems most commonly 

used in various scenarios and contexts. From a high level perspective all these solutions are 

very similar in their main principle. They all provide metadata describing the package and its 

dependencies as well as a recipe for installing or building the content of the package into a 

final form suitable for use on target system.  
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Systems below are used in variants of the UNIX operating system. Most of them are proven in 

real-world deployments and can be thus used as the stripped-down basis of the MPM. Some 

of them are novel (Ubuntu Snappy) - we believe these must be considered and used in the 

context of MIKELANGELO - requirements and targeted results. 

3.2.1 RPM Package Manager 

RPM packaging system has been introduced by Red Hat. It has become the de facto standard 

in the Linux community, used by almost all commercial Linux distributions (for example Red 

Hat or SUSE). It has evolved in a standard requiring LSB-compliant systems to support 

installation of RPM packages. RPM provides many features that make it a popular system for 

distribution and management. Although not all of them are mandatory for packaging OSv 

based applications, we describe some of these features in the paragraphs below. 

RPM package management, from the perspective of the end user, provides a set of tools 

facilitating installation of packages in an non-interactive way. Contents (e.g., files and 

settings) of the installed applications are stored and consistently tracked throughout the 

entire lifecycle of the package. This greatly simplifies upgrades and uninstallation. RPM also 

provides tools for validation of installed packages. These tools help diagnosing potential 

issues in installed systems (for example, part of a package may be compromised due to disk 

failure or an attacker). Tracked files may also be searched to determine use of files by 

packages. 

One of the most powerful features of RPM is its dependency management. Packages specify 

a list of prerequisites that must be resolved prior to installing the package itself. The 

dependency list (eventually, a graph) is extensively used when uninstalling packages 

guaranteeing that a package is not uninstalled when there exist packages depending on it. 

All these features make RPM a tool of choice by system administrators significantly 

simplifying the workflow and regular processes of maintaining software on Linux systems. 

However, for the purposes of this document and OSv itself, the more important aspect of 

RPM system is a set of tools that support downloading of source code, patching the code to 

meet author’s intentions, automatic code configuration and finally compile the code into 

executable format. This entire workflow furthermore simplifies management of packages 

specific for the target environment. For example, an HPC provider may store a number of 

commonly used packages, all compiled with compiler flags specific for the hardware. RPM 

describes the recipe for patching the source code and configuring the compiler. 
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3.2.2 Debian Package Manager 

On another part of the Linux spectrum there is a Debian packaging system - Debian Package 

Manager (dpkg). Debian packages [20] are similar to RPM packages and are also distributed 

as binary packages, containing executables and supporting files, or source packages 

containing the source code and a number of patches modifying the original code for target 

machine. Packages also specify dependencies which are appropriately handled by the 

package manager. Due to resemblance between RPM and Debian Package Managers, we 

shall omit an in-depth description of Debian Package Manager. 

3.2.3 Homebrew 

Homebrew [21] is said to be the missing package manager for OS X. Although OS X comes 

with useful utilities and packages and also provides its own App Store, common packages, 

primarily from the Unix world, are not directly available. 

Homebrew helps building packages using simple Ruby scripts. It provides a high level API to 

support package authors with common package installation tasks such as invoking external 

commands and providing inline patches. 

The following is a simple example of a script (formula) for one of the packages (taken from 

[22]). The script starts with several meta data information (description, homepage, location of 

the source package and a SHA256 fingerprint allowing Homebrew to validate the download. 

Additional property head allows package authors to specify where development branches 

may be downloaded. Dependencies can be specified as mandatory, optional and 

recommended 

● mandatory dependencies are always installed 

● optional dependencies may be installed but are disabled by default 

● recommended dependencies will be installed by default but may be disabled 

Additional switch (:build) can be used to specify a build-time only dependency as shown in 

the example below where cmake tool is used.  

class Polarssl < Formula 
  desc "Cryptographic & SSL/TLS library" 
  homepage "https://tls.mbed.org/" 
  url "https://tls.mbed.org/download/mbedtls-2.1.0-gpl.tgz" 
  sha256 "b61b5fe6aa33ed365289478ac48f1496b97eef0fb813295e534e0c2bd435dcfc" 
  head "https://github.com/ARMmbed/mbedtls.git" 

 
  depends_on "cmake" => :build 

 
  def install 
    # "Comment this macro to disable support for SSL 3.0" 
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    inreplace "include/mbedtls/config.h" do |s| 
      s.gsub! "#define MBEDTLS_SSL_PROTO_SSL3", "//#define MBEDTLS_SSL_PROTO_SSL3" 
    end 

 
    system "cmake", *std_cmake_args 
    system "make" 
    system "make", "install" 

 
    # Why does PolarSSL ship with a "Hello World" executable. Let's remove that. 
    rm_f "#{bin}/hello" 
    # Rename benchmark & selftest, which are awfully generic names. 
    mv bin/"benchmark", bin/"mbedtls-benchmark" 
    mv bin/"selftest", bin/"mbedtls-selftest" 
    # Demonstration files shouldn't be in the main bin 
    libexec.install "#{bin}/mpi_demo" 
  end 

 
  test do 
    (testpath/"testfile.txt").write("This is a test file") 
    # Don't remove the space between the checksum and filename. It will break. 
    expected_checksum = "e2d0fe1585a63ec6009c8016ff8dda8b17719a637405a4e23c0ff81339148249  
testfile.txt" 
    assert_equal expected_checksum, shell_output("#{bin}/generic_sum SHA256 
testfile.txt").strip 
  end 
end 

The install script then takes care of applying changes to the code (inreplace), calling specific 

commands from the system (system, rm_f, mv etc.) and finally installing the package with the 

libexec tool. 

3.2.4 Snappy Ubuntu 

Snappy Ubuntu [23] is a new packaging system for Ubuntu supporting transactional updates. 

It is targeting clouds and (mobile) devices and provides a very streamlined version of the 

Ubuntu Core [24]. Applications are installed atomically thus supporting seamless roll back if 

needed. Applications are sandboxed. Thus they are not allowed to access and modify parts of 

the system outside its own sandbox, with the aim of providing greater levels of security and 

easier roll-backs. Snappy package is a compressed file containing all the files that comprise 

the package and a special meta directory containing package’s meta information: name, 

version, vendor etc. It also describes the list of binaries and services provided by the package 

as well as required capabilities of the system that are mandatory for proper functioning of a 

package. 

The following listing shows a very simple Snappy package [25]. 

name: xkcd-webserver 
version: 0.5 
vendor: Snappy Developers <snappy-devel@lists.ubuntu.com> 
icon: meta/xkcd.png 
services: 
 - name: xkcd-webserver 
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   start: bin/xkcd-webserver 
   description: A fun webserver 
   caps: 
   - networking 
   - network-service 

3.2.5 Docker 

Docker [18] has revolutionised the use of Linux containers. It has started as a layer on top of 

LXC technology simplifying the preparation of containers. Later it has completely replaced 

LXC with its own execution environment allowing Docker to introduce new concepts.  

Although Docker works with containers rather than full virtual images it is nevertheless 

valuable from the perspective of the application packaging, as it has already been identified 

in the MIKELANGELO proposal: Capstan was inspired by the ease of use of Docker. The 

cornerstone of a Docker container is a single file called Dockerfile comprised of several 

commands instructing Docker how to build the container. A container typically starts with a 

command specifying the base container (FROM <container name> command). This will notify 

Docker that when building a container, it must first download the appropriate base container 

if it hasn’t used it before. One caveat a user must pay special attention to is that when 

running a container it will use the kernel from the underlying host and not actually the base 

container specified in this command. 

Other commands Dockerfile supports allow users to execute commands at certain points in 

time. Some of the most important are presented next: 

● RUN is used when building a container. It runs any command specified as a parameter 

and applies it as an additional layer on top of previous one. This means, that after 

every RUN command, a new layer comprised of previous state and additional changes 

is created. Docker optimises the storage management so that layers do not escalate 

in size. 

● CMD is executed once a container is started. In contrast to the RUN command which 

is used during build-time, the CMD can only be issued once. Even if there are two or 

more CMD instructions, only the last one will prevail. Users are allowed to override 

the default command when starting a container. 

● ENV allows setting environment variables will be used for all succeeding Docker 

commands as well as in a running container. A powerful feature of the Docker 

command line tool is the ability to check all available environment variables (docker 

inspect) which gives the end user the ability to understand which customisation 

points the container provides. 

● ADD and COPY are used to copy files from various sources to the container. 

● VOLUME defines a mount point given to the container. It may be provided either by 

the host itself or by another container. 
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● LABEL facilitates the description of arbitrary metadata that may be attributed to the 

container. 

In the following paragraphs we present the actual procedure for building of the Docker 

container, supporting our OpenFOAM use case [6]. Given we are considering Docker 

containers as the closest so-called relatives to our packages, we are presenting the concrete 

Dockerfile, used to build the container for the said use case. 

It starts by providing the initial container layer which is based on Ubuntu 14.04. It then makes 

sure that the appropriate DEB source (deb http://www.openfoam.org/download/ubuntu 

trusty main) is available and runs some “apt-get” commands. Because ‘YES’ is forced, the 

installation of all dependent packages is automatic. 

As we have seen before, OpenFOAM requires that the environment is properly initialised. 

Since we are not allowed to add more than one CMD commands in Dockerfile, we decided to 

request this initialisation as part of user’s bashrc script (it should be noted that even if it were 

possible to add more than one CMD, the end user is always allowed to replace it when 

running the container). 

We then also add the actual OpenFOAM input case and provide a default command 

executed upor docker start. This could be replaced with a VOLUME or even given to the user 

to set when specifying the properties of a container to execute. 

FROM ubuntu:14.04 
ADD openfoam.list /etc/apt/sources.list.d/ 

 
RUN ["apt-get", "update"] 
RUN ["apt-get", "install", "-y", "--force-yes", "openfoam231"] 

 
RUN echo ". /opt/openfoam231/etc/bashrc" >> /root/.bashrc 

 
ADD airFoil2D_04 /work/ 

 
CMD . /opt/openfoam231/etc/bashrc && simpleFoam -case /work 

Based on Dockerfile, the container’s metadata is stored as an “image”. The format of the 

Docker image metadata is described in [26]. Open Container initiative [27], backed by Linux 

Foundation a number of sponsors including Docker, Google, Red Hat and Microsoft, is an 

attempt to make this a truly open format for container-based technologies. This will increase 

the interoperability of different container technologies and prevent future vendor lock-ins. 

3.2.6 Summary of Existing Systems 

Packaging systems presented in the previous sections all provide common features 

summarised in the following list: 
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● installation of binary packages 

● installation from source code, including mechanisms to modify original code for 

specific needs 

● dependency tracking and management 

● package versioning 

● use of rich metadata facilitating search 

● a toolset supporting package generation 

Apart from the RPM most of the others are actually very specific to the target systems they 

are intended to be used in. This renders them difficult to be used directly for the purposes of 

the OSv packaging system. RPM, on the other hand, has no system-specific requirement 

which makes it a plausible candidate for packaging OSv applications. However, the sheer 

complexity of the RPM system and the overhead of capabilities it provides makes it very 

impractical to use in the context of OSv. 

3.3 Design of the MIKELANGELO Package Manager 

The initial business requirements gathered from the perspective of internal use cases have 

shown that at least for this early phase of the project application packaging does not 

represent a critical requirement for the MIKELANGELO stack. This can be attributed to the fact 

that all use cases are used to configure their applications manually in their existing 

environments.  

The following is a list of  high level requirements that have been identified in the initial 

requirements gathering process: 

REQ 24: OSv support for contextualisation of VM instances. The most important 

requirement for the application packaging and OSv itself is the ability to customise 

the content and behaviour of the application running within virtual machine, i.e. 

contextualisation of VMs. Contextualisation should be enabled during image building 

process as well as during run-time. The former is of particular interest for application 

packaging, while the latter already is supported by means of an internal extensible 

HTTP server providing REST API accessing and controlling OSv and applications. 

REQ 36: Support environment variables in Capstan. Environment variables are one 

simple form of contextualisation allowing users to control the behaviour of the 

application from the outside. This requirement is actually a run-time requirement. 

Capstan not only allows building of images but also running them in various runtime 

environments.  

REQ 51: Capstan must allow publishing of images to OpenStack Image service. 

OpenStack has been chosen as the cloud management platform to be used as the 
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basis for the MIKELANGELO stack. One of the identified requirements is to allow 

direct integration of application packaging with OpenStack services, in particular 

image (Glance) and compute service (Nova). This would simplify the deployment of 

images and instantiation of virtual machines. 

REQ 52: Capstan must allow using OpenStack Image Service as base images to 

be extended. Capstan provides an internal repository of built images serving as the 

potential base images. The user can either use the official repository or use her own. 

This requirement would simplify the use of existing base images from users’ 

OpenStack cloud environment augmenting them with additional packages and data. 

All of the aforementioned requirements were targeting the Capstan tool. During the design 

of the application packaging and review of other tools, these requirements have been 

evaluated against the goals of MIKELANGELO, the provided requirements and the existing 

package management systems.  

A high level design of the MIKELANGELO package management is presented in the following 

figure (Figure 2). The end user should only interact with the MPM client tool. This will in turn 

use the package manager functionalities to validate and build packages. Package, as we will 

describe in the following subsection, is a compressed file of everything the package author 

needs for the package to function properly. Package is thus no longer a virtual image. 

 

Figure 2: Architecture of the MIKELANGELO Package Manager. 

In order to simplify use of packages in live environments, MPM will also support generation 

of target virtual images through the Image Builder component. These images will be suitable 

for various virtual environments (QEMU, OpenStack, Amazon etc.). 

The following subsections present the crucial parts of the package management.  
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3.3.1 MIKELANGELO Package Manager Client Command Line Tool 

The command line tool of the MIKELANGELO packaging will support package authors to 

create valid and solid packages suitable for use on top of the MIKELANGELO stack. This 

section presents some of the main functionalities provided by this tool. 

Package initialisation. In previous sections we have presented the structure of a package. 

The tool will provide a command to instantiate a new package with some basic information 

(for example name and author). This will provide a basic structure of the package the author 

will be able to immediately start working on. 

Package validation. Validation of a package consists of several tests. First, if the application 

is a native binary, the validation must verify that it has been compiled into an OSv-compliant 

binary (for example, shared library). Validation may also verify if dependencies are satisfied 

(for example all referenced shared libraries are also part of this package) and, if they are not, 

provide the author with a list of missing dependencies that should be either added into this 

package or referenced as an external package. Validation will also verify the metadata 

description of a package and alert the author of any identified issues (for example formatting 

error in the metadata file). 

Package building. Once the author is satisfied with the package content, the tool will also 

provide a shortcut for building the final package file by compressing the contents of the 

package directory. 

Image composition. Using the package and all its dependencies, the tool will also support 

generation of virtual machine images in various formats (e.g., QCOW2 or RAW). This will 

allow integration with OpenStack and HPC environments without any changes to existing 

systems.  

Image testing. If package author provides a testing hook, the tool will also enable testing of 

the built image. 

Other capabilities will be defined in the second and third year once the actual real-world 

demonstrators will be supported by the MIKELANGELO stack. 

3.3.2 Structure of the MIKELANGELO Application Package 

As we have already discussed in previous sections, the two existing approaches used in OSv 

build regular virtual images (for example QCOW2 or RAW). With MPM we propose to change 

the notion of a package: MPM Package is a compressed file containing all the required 

content of the package and additional metadata.  
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The content is what needs to be uploaded to the image but only when used by the end user. 

It can contain arbitrary hierarchy of files. The initial version will have no explicit rules 

enforcing end users to use specific locations for files of certain type (e.g. binaries, shared 

libraries, supporting files). However, in future versions we are going to investigate whether 

additional rules for certain types of files would be reasonable to be more consistent among 

all potential packages that may be included in the target virtual image. This could be similar 

to the way different types of files are stored in Linux (/usr/bin, /var, …). Alternatively, MPM 

could take approach similar to that of Snappy. All binaries that can be used by package users 

should be specified explicitly in the metadata. Other files are separated into package root 

directory in the target image. 

A special folder named “meta” should be placed inside a package. This will contain the 

metadata of the package, such as it’s name, description, author and optionally an icon of the 

package. Part of the package’s metadata is also a list of executables and a list of services. 

Executable is any OSv-compliant binary that is supposed to be executed by end users. 

Services are OSv-compliant binaries offering specific services to external applications, e.g., a 

database or an NFS server. Dependencies of the underlying package are also an important 

part of the package’s metadata. Dependencies may provide the OSv kernel, additional 

required libraries, or complete application modules (HTTP or NFS server, for example). 

Metadata folder is ignored when uploading package into the actual virtual image. However it 

is used as part of the package discovery in the repository as well as when composing images 

consisting of several packages. 

3.3.3 Package Hooks 

Hooks are optional actions that can be executed at specific points of the process. For 

example, Git uses hooks to perform specific actions when user commits files or pushes them 

into the remote repository. There are typically two reasons for introducing hooks: 

decentralisation of configuration and modularity/extensibility of the process. 

Both are important for MIKELANGELO application packaging due to the fact that most of the 

actual work related to building the application package and adding them into the target 

image is done by authors preparing applications compliant with OSv. MPM will thus provide 

mechanisms and supporting tools to simplify the process for package authors. 

Hooks are a special part of the package’s metadata. Thus, they must be placed in the 

“meta/hooks” subdirectory of the package. First version of MPM is going to support the 

following hooks: 
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● meta/hooks/build may be used to produce the content of the package suitable for 

uploading into a virtual image. This can include downloading of the original source 

tree, configuration and building. This hook is executed in the host environment so it 

can be an arbitrary script (BASH, Python, …). 

● meta/hooks/run should specify the command that needs to be executed whenever 

the virtual machine is started. The hook should also allow specifying additional 

predefined environment variables. 

● meta/hooks/java-run specifies the configuration for running Java applications. This 

consists of the Java Virtual Machine configuration options and the application 

command line (name of the class and it’s arguments). Java must be treated differently 

from native apps because multiple Java applications running within one OSv instance 

also run within a single Java Virtual Machine (JVM). All the JVM configuration options 

must thus be considered and merged into one, meaningful configuration of JVM. 

● meta/hooks/test may be used to perform any kind of testing facility to validate that 

the application package is properly configured. 

Both meta/hooks/run and meta/hooks/java-run are executed in the host environment 

updating the startup information of the OSv virtual image. Therefore, they require interaction 

with the OSv tools from the target image to upload content and specify runtime commands. 

Two options for these hooks are still being investigated and will be analysed during the 

development of the application packaging facility. The first option is to design a format with 

all mandatory and optional options. The other is to provide an API and a supporting library 

that can be used as part of the packaging process, similarly to the way authors specify the 

command to be executed on VM boot. We believe that the latter, although being slightly 

more difficult for non-programmers, is more flexible and robust to user errors. 

All hooks are optional and used only if corresponding file is found in the package’s metadata. 

They are executed and used in appropriate phases of the process. There should be no 

additional files in the hooks directory. If required, they should be placed inside 

meta/hooks/support directory. The MPM tool will provide functionality to validate the 

content of the package. 

Although there is only small number of hooks planned for the first version of the 

MIKELANGELO packaging, this mechanism will allow us to extend its capabilities with new 

features in later stages of the project. One such extension would be a hook specifying the 

HTTP REST API of the application package and it’s implementation (for example, OpenFOAM 

may introduce an HTTP REST API allowing end users to control the behaviour of the 

simulation). 

The following figure (Figure 3) details the relation of various MPM tools with the 

aforementioned hooks. 
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Figure 3: Relationships between the tools provided by the MIKELANGELO Package Manager, optional author-

provided hooks and results. 

3.3.4 Customisation and Configuration of Packages 

Application packages may also provide custom configuration switches for controlling the 

behaviour of the application when executed. These should be specified as part of the 

package’s metadata (for example, a port number at which the service listens for client 

connections, an NFS mount URI or even just the name of the binary that is to be executed by 

the VM). Package authors should be able to expose such configuration options to end users. 

For this, we propose another metadata file meta/opts with a simple structure 

● long option name represents the long name of the option (e.g. --nfs-mount) 

● short option name represents the short name of the option (e.g. -n) 

● description should be provide a brief description of the option for the help message 

presented to the end user 

● default value holds the default value for this option if not provided by the end user 

At least one of the names should be provided, but preferably both. Description and default 

values are both optional. However, if the default value is omitted, it should be handled by the 

application itself. 
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3.3.5 Integration with OpenStack 

OpenStack uses Glance as its central virtual machine image repository. The repository stores 

virtual images in various widely used file formats (QCOW2, RAW, Amazon images, a Docker 

container etc.). Virtual images can be uploaded into Glance through Horizon, the central GUI 

of OpenStack, or via the Glance API. 

MPM will support building at least QCOW2 and RAW images resulting in packaged 

applications that can directly be stored in Glance and executed on OpenStack Cloud. 

However, the packaging of applications for OSv will be much more flexible. Thus, we are 

going to investigate different ways supporting integration of packages in their raw format 

(compressed file) directly into the Glance. Once requested by Nova, Glance will serve these 

packages and provide tools allowing on-the-fly generation of target images. 

One of the things task T4.3 in collaboration with work package 5 will investigate is whether 

such approach is reasonable when executed in real-world environments (for example, the Big 

Data use case). One of the crucial aspects of on-the-fly generation of images is whether it can 

outperform booting standard images due to its smaller size. 

3.4 Analysis of Existing OSv Applications 

OSv applications [15] is a dedicated repository, hosted at Github, where community provides 

their modifications to some of the most popular applications used in cloud applications. 

These include Apache Spark, Cassandra NoSQL database, memcached, Jetty application 

container and MySQL to name just a few. These applications do not contain any sources or 

binaries. Instead, they provide scripts that acquire the code and prepare it for upload onto 

virtual image when requested by the OSv build script or Capstan. 

Although each application has its own way of building it, they share some common ideas. 

Basically all use Makefile which is automatically invoked by the OSv build script. Most 

commonly used steps in the Makefile are the following: 

● set local and environment variables 

● download files from the internet and unpack compressed files 

● file and directory manipulations (e.g. copy, move, create directory) 

● patch files with changes necessary to build compliant binaries 

● compile application sources, typically using Makefile 

● use other system utilities (e.g. install, find, echo) 

● generate usr.manifest file used to control the content that’s uploaded to the image  
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4 The Seastar API 

In the first research paper on OSv [7], one of the benchmarks used was Memcached [8], a 

popular cloud application used for caching of frequently requested objects to lower the load 

on slower database servers. We will continue to use this benchmark for the MIKELANGELO 

work as well (see Section 7 below). Memcached demonstrated how an unmodified network 

application can run faster on OSv than it does on Linux - a 22% speedup was reported in the 

paper.  

22% is an impressive speedup that we get just by replacing Linux in the guest by OSv, 

without modifying the application. Additional small speed-ups may be achieved by 

continuing to optimize OSv, and this is one part of our plan. The other involves an in-depth 

analysis of the kernel and applications understanding what is actually causing major 

bottlenecks. Overcoming these bottlenecks may result in 2-time, 4-time or even higher 

speedups. 

When we profiled memcached on OSv, we quickly discovered two performance bottlenecks: 

1. Inefficiencies inherent in the Posix API, so OSv cannot avoid them and still remain 

Posix compatible: For example, in one benchmark we noticed that 20% of the 

memcached runtime was locking and unlocking mutexes - almost always 

uncontended. For every packet we send or receive, we lock and unlock more than a 

dozen mutexes. Part of OSv’s performance advantage over Linux is that OSv uses a 

“netchannel” design for the network stack reducing locks (see Section 2), but we still 

have too many of them, and the Posix API forces us to leave many of them: For 

example, the Posix API allows many threads to use the same socket, allows many 

threads to modify the list of file descriptors, to poll the same file descriptors - so all 

these critical operations involve locks, that we cannot avoid. The socket API is also 

synchronous, meaning that when a send() returns the caller is allowed to modify the 

buffer, which forces the network code in OSv to not be zero-copy. 

2. Unscalable application design: It is not easy to write an application to scale linearly 

in the number of cores in a multi-core machine, and many applications that work well 

on one or two cores, scale very badly to many cores. For example memcached keeps 

some global statistics (e.g., the number of requests served) and updates it under a 

lock - which becomes a major bottleneck when the number of cores grow. What 

might seem like an acceptable  solution - lock-free atomic variables - is also not 

scalable, because while no mutex is involved, atomic operations, and the cache line 

bounces (as different CPUs read and write the same variable), both become slower as 

the number of cores increase. So writing a really scalable application - one which can 

run on (for example) 64 cores and run close to 64 times faster than it does on a single 
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core - is a big challenge, one with which the traditional Linux APIs rarely help with, 

and therefore most applications are not as scalable as they should be - which will 

become more and more noticeable as the number of cores per machine continues to 

increase. 

In [7], we tried an experiment to quantify the first effect - the inefficiency of the Posix API. The 

subset of memcached needed for the benchmark was very simple: a request is a single packet 

(UDP), containing a “GET” or “PUT” command, and the result is a single UDP packet as well. 

So we implemented in OSv a simple “packet filter” API: every incoming ethernet packet gets 

processed by a function (memcached’s hash-table lookup) which immediately creates the 

response packet. There is no additional network stack, no locks or atomic operations (we ran 

this on a single CPU), no file descriptors, etc. The performance of this implementation (as 

reported in [7]) was an impressive 4 times better than the original memcached server! 

But while the simple “packet filter” API of [7] was useful for the trivial UDP memcached, it was 

not useful for implementing more complex applications, for example applications which are 

asynchronous (cannot generate a response immediately from one request packet), use TCP or 

need to use multiple cores. Fast “packet filter”-like APIs are already quite commonly used, 

and DPDK [9] is a good example, and are excellent to implement routers and similar packet-

processing software; But they are not really helpful if you try to write a complex, highly-

asynchronous network applications of the kind that is often used on the cloud - such as a 

NoSQL database, HTTP server, search engine, and so on. 

For the MIKELANGELO project, we set out to design a new API which could answer both 

above requirements: An API which new applications can use to achieve optimal performance 

(i.e., the same level of performance achieved by the “packet filtering API” implementation), 

while at the same time allows the creation of complex real-life applications: The result of this 

design is Seastar: 

● Seastar is a C++14 library, which can be used on both OSv and Linux. Because Seastar 

bypasses the kernel for most things, we do not expect additional speed 

improvements by running it on OSv - though some of OSv’s other advantages (such 

as image size and boot time) may still be relevant. 

● Seastar is not part of the kernel, but is nevertheless an integral part of the 

MIKELANGELO guest operating system, needed by new applications that choose to 

use it to go beyond the improvement OSv can offer to unmodified applications. For 

example, in the “Cloud Bursting” use case we will show how a re-implementation of 

Cassandra using Seastar will provide a performance boost much greater than we 

could get by running Cassandra on OSv. 

● Seastar is designed for the needs of complex asynchronous server applications of the 

type common on the cloud - e.g., NoSQL databases, HTTP servers, etc. Here 
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“asynchronous” means that a request usually triggers a cascade of events (disk reads, 

communication with other nodes, etc.) and only at a later time can the reply be 

composed. 

● Seastar provides the application the mechanisms it needs to solve both performance 

bottlenecks mentioned at the top of this section - achieve optimal efficiency on one 

core, as well as scalability in the number of cores. We’ll explain how Seastar does this 

below. 

● Seastar bypasses the legacy kernel APIs. Notably, it directly accesses the network card 

directly using DPDK. Seastar provides a full TCP/IP stack (which DPDK does not). 

We’ve reimplemented memcached using Seastar, and measured 2 to 4-fold performance 

improvement over the original memcached as well as near-perfect scalability to 32 cores 

(something which the “packet filter” implementation couldn’t do). Figure 4 below for more 

details. 

 

Figure 4: Performance of stock memcached (orange) vs Seastar reimplementation of memcached (blue), using TCP 

and the memaslap [12] workload generator - for varying number of cores The red bars show a non-standard 

memcached deployment using multiple separate memcached processes (instead of one memcached with multiple 

threads); Such a run is partially share-nothing (the separate processes do not share memory or locks) so 

performance is better than the threaded server, but still the kernel and network stack is shared so performance is 

not as good as with Seastar. 

How can an application designed to use Seastar be so much faster than one using more 

traditional APIs such as threads, shared memory and sockets? The short answer is that 
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modern computer architecture has several performance traps that are easy to fall into, and 

Seastar ensures that you don’t by using the following architecture: 

1. Sharded (“share nothing”) design 

Modern multi-core machines have shared memory, but using it incorrectly can 

decimate an application’s performance: Locks are very slow, and so are processor-

provided “lock-free” atomic operations and memory fences. Reading and writing the 

same memory object from different cores significantly slows down processing 

compared to one core finding the object in its cache (this phenomenon is known as 

“cache line bouncing”). All of these slow operations already hurt one-core 

performance, but get progressively slower as the number of cores increases, so it also 

hurts the scaling of the application to many cores. 

Moreover, as the number of cores increases, multi-core machines inevitably become 

multi-socket, and we start seeing NUMA (non-uniform memory access) issues. I.e., 

some cores are closer to some parts of memory - and accessing the “far” part of 

memory can be significantly slower. 

So Seastar applications use a share-nothing design: Each core is responsible for a 

part (a “shard”) of the data, and does not access other cores’ data directly - if two 

cores wish to communicate, they do so through message passing APIs that Seastar 

provides (internally, this message passing uses the shared memory capabilities 

provided by the CPU). 

When a Seastar application starts on N cores, the available memory is divided into N 

sections and each core is assigned a different section (taking NUMA into account in 

this division of memory, of course). When code on a core allocates memory (with 

malloc(), C++’s new, etc.), it gets memory from this core’s memory section, and only 

this core is supposed to use it.  

The following figure (Figure 5) shows the difference between traditional stack and the 

one introduced by Seastar. 

 

Figure 5: Comparison of traditional and Seastar’s shared stack.  
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2. Futures and continuations, not threads 

For more than a decade, it has been widely acknowledged that high-performance 

server applications cannot use a thread per connection, as those impose huge 

memory consumption (thread stacks are big) and significant context switch 

overheads. Instead, the application should use just a few threads (ideally, just one 

thread per core) which each handles many connections. Such a thread usually runs an 

“event loop” which waits for new events on its assigned connections (e.g., incoming 

request, disk operation completed, etc.) and processes them. However, writing such 

“event driven” applications is traditionally very difficult because the programmer 

needs to carefully track the complex state of ongoing connections to understand 

what each new event means, and what needs to be done next. 

Seastar applications also run just one thread per core. Seastar implements the futures 

and continuations API for asynchronous programming, which makes it easier 

(compared to classic event-loop programming) to write very complex applications 

with just a single thread per core. A future is returned by an asynchronous function, 

and will eventually be fulfilled (become ready), at which point a continuation, a piece 

of non-blocking code, can be run. The continuations are C++14 lambdas, anonymous 

functions which can capture state from the enclosing code, making it easy to track 

what a complex cascade of continuations is doing. We explain Seastar’s futures and 

continuations in more detail below. 

The future/continuation programming model is not new and has been used before in 

various application frameworks (e.g., Node.js), but before Seastar, it was only partially 

implemented by the C++14 standard (std::future). Moreover, Seastar’s 

implementation of futures are much more efficient than std::future because Seastar’s 

implementation uses less memory allocation, and no locks or atomic operations: A 

future and its continuation belong to one particular core, thanks to Seastar’s sharded 

design. 

3. Asynchronous disk I/O 

Continuations cannot make blocking OS calls, or the entire core will wait and do 

nothing. So Seastar uses the kernel’s AIO (“asynchronous”) mechanisms instead of the 

traditional Unix blocking disk IO APIs. With AIO, a continuation only starts a disk 

operation, and returns a future which becomes available when the operation finally 

completes. 

Asynchronous I/O is important for performance of applications which use the disk, 

and not just the network: A popular alternative (used in, for example, Apache 

Cassandra) is to use a pool of threads processing connections, so when one thread 

blocks on a disk access, a different thread gets to run and the core doesn’t remain 

idle. However, as explained above, using multiple threads has non-negligible 

performance overheads, especially in an application (like Cassandra) which may need 
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to do numerous concurrent disk accesses. With modern SSD disk hardware, 

concurrent non-sequential disk I/O is no longer a bottleneck (as it was with spinning 

disks and their slow seek times), so the programming framework should not make it 

one. 

4. Userspace network stack 

Seastar can optionally bypass the kernel’s (Linux’s or OSv’s) network stack and all its 

inherent inefficiencies like locks, by providing its own network stack: 

Seastar accesses the underlying network card directly, using either DPDK (on Linux or 

OSv) or virtio (only supported on OSv). On top of that, it provides a full-featured 

TCP/IP network stack, which is itself written in Seastar (futures and continuations) and 

correspondingly does not use any locks, and instead divides the connections among 

the cores; Once a connection is assigned to a core, only this core may use it. The 

connection will only be moved to a different core if the application decides to do so 

explicitly). 

Importantly, Seastar’s network stack supports multiqueue network cards and RSS 

(receive-side steering), so the different cores can send and receive packets 

independently of each other without the need for locks and without creating 

bottlenecks like a single core receiving all packets. When the hardware’s number of 

queues is limited below the number of available cores, Seastar also uses software RSS 

- i.e., some of the cores receive packets and forward them to other cores. 

4.1 A Taste of Seastar: Futures and Continuations 

A complete tutorial  of the Seastar API is beyond the scope of this deliverable, but we do plan 

to write one later as part of the project: We have already released Seastar as open source 

(http://seastar-project.org),  and an open-source library would not be very useful if it is not 

well documented. Here, just to give the reader a taste of the Seastar API, we will have a 

partial look at how futures and continuations are used by a Seastar application. 

Futures and continuations, which we will introduce now, are the building blocks of 

asynchronous programming in Seastar. Their strength lies in the ease of composing them 

together into a large, complex, asynchronous program, while keeping the code fairly readable 

and understandable. 

A future is a result of a computation that may not be available yet. Examples include: 

● a data buffer that we are reading from the network 

● the expiration of a timer 

● the completion of a disk write 

● the result of a computation that requires the values from one or more other futures. 

http://seastar-project.org/
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The type future<int> variable holds an integer that will eventually be available - at this 

point might already be available, or might not be available yet. The method available() 

tests if a value is already available, and the method get() gets the value. The type 

future<> (with empty brackets) indicates something which will eventually complete, but not 

return any value. 

A future is usually returned by a promise, also known as an asynchronous function, a 

function or object which returns a future and arranges for this future to be eventually 

resolved. One simple example is Seastar's function sleep(): 

future<> sleep(std::chrono::duration<Rep, Period> dur); 

This function arranges a timer so that the returned future becomes available (without an 

associated value) when the given time duration elapses. 

A continuation is a callback (typically a C++ lambda) to run when a future becomes 

available. A continuation is attached to a future with the then() method. Here is a simple 

example: 

#include "core/sleep.hh" 

#include <iostream> 

 

void f() { 

    std::cout << "Sleeping... " << std::flush; 

    using namespace std::chrono_literals; 

    sleep(1s).then([] { 

        std::cout << "Done.\n"; 

        engine_exit(); 

    }); 

} 

In this example we see us getting a sleep(1s) future, and attaching to it a continuation 

which prints a message and exits. The future will become available after 1 second has passed, 

at which point the continuation is executed. Running this program, we indeed see the 

message "Sleeping..." immediately, and one second later the message "Done." appears and 

the program exits. 

So far, this example was not very interesting - there is no parallelism, and the same thing 

could have been achieved by the normal blocking POSIX sleep(). Things become much 

more interesting when we start several sleep() futures in parallel, and attach a different 

continuation to each. Futures and continuation make parallelism very easy and natural: 

#include "core/sleep.hh" 
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#include <iostream> 

 

void f() { 

    std::cout << "Sleeping... " << std::flush; 

    using namespace std::chrono_literals; 

    sleep(200ms).then([] { std::cout << "200ms " << std::flush; }); 

    sleep(100ms).then([] { std::cout << "100ms " << std::flush; }); 

    sleep(1s).then([] { std::cout << "Done.\n"; engine_exit(); }); 

} 

Each sleep() and then() call returns immediately: sleep() just starts the requested 

timer, and then() sets up the function to call when the timer expires. So all three lines 

happen immediately and f returns. Only then, the event loop starts to wait for the three 

outstanding futures to become ready, and when each one becomes ready, the continuation 

attached to it is run. The output of the above program is of course: 

$ ./a.out 

Sleeping... 100ms 200ms Done. 

sleep() returns future<>, meaning it will complete at a future time, but once complete, 

does not return any value. More interesting futures specify a value of any type (or multiple 

values) that will become available later. In the following example, we have a function 

returning a future<int>, and a continuation to be run once this value becomes available. 

Note how the continuation gets the future's value as a parameter: 

#include "core/sleep.hh" 

#include <iostream> 

 

future<int> slow() { 

    using namespace std::chrono_literals; 

    return sleep(100ms).then([] { return 3; }); 

} 

 

void f() { 

    slow().then([] (int val) { 

        std::cout << "Got " << val << "\n"; 

        engine_exit(); 

    }); 

} 

The function slow() deserves more explanation. As usual, this function returns a future 

immediately, and doesn't wait for the sleep to complete, and the code in f() can chain a 

continuation to this future's completion. The future returned by slow() is itself a chain of 

futures: It will become ready once sleep's future becomes ready and then the value 3 is 

returned.  
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This example begins to show the convenience of the futures programming model, which 

allows the programmer to neatly encapsulate complex asynchronous operations. slow() might 

involve a complex asynchronous operation requiring multiple steps, but its user can use it 

just as easily as a simple sleep(), and Seastar's engine takes care of running the continuations 

whose futures have become ready at the right time. 

Ready futures: A future value might already be ready when then() is called to chain a 

continuation to it. This important case is optimized, and usually the continuation is run 

immediately instead of being registered to run later in the next iteration of the event loop. 

This optimization is done usually, though sometimes it is avoided: The implementation of 

then() holds a counter of such immediate continuations, and after many continuations have 

been run immediately without returning to the event loop (currently the limit is 256), the next 

continuation is deferred to the event loop in any case. This is important because in some 

cases we could find that each ready continuation spawns a new one, and without this limit we 

can starve the event loop. It important not to starve the event loop, as this would starve 

continuations of futures that weren't ready but have since become ready, and also starve the 

important polling done by the event loop (e.g., checking whether there is new activity on the 

network card). 

make_ready_future<> can be used to return a future which is already ready. The 

following example is identical to the previous one, except the asynchronous function fast() 

returns a future which is already ready, and not one which will be ready in a second as in the 

previous example. The nice thing is that the consumer of the future does not care, and uses 

the future in the same way in both cases. 

#include "core/future.hh" 

#include <iostream> 

 

future<int> fast() { 

    return make_ready_future<int>(3); 

} 

 

void f() { 

    fast().then([] (int val) { 

        std::cout << "Got " << val << "\n"; 

        engine_exit(); 

    }); 

} 

Capturing state in continuations: We've already seen that Seastar continuations are 

lambdas, passed to the then() method of a future. In the examples we've seen so far, 

lambdas have been nothing more than anonymous functions. But C++11 lambdas have one 
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more trick up their sleeve, which is extremely important for future-based asynchronous 

programming in Seastar: Lambdas can capture state. Consider the following example: 

#include "core/sleep.hh" 

#include <iostream> 

 

future<int> incr(int i) { 

    using namespace std::chrono_literals; 

    return sleep(10ms).then([i] { return i + 1; }); 

} 

 

void f() { 

    incr(3).then([] (int val) { 

        std::cout << "Got " << val << "\n"; 

        engine_exit(); 

    }); 

} 

The asynchronous function incr(i) takes some time to complete (it needs to sleep a bit 

first...), and in that duration, it needs to save the i value it is working on. In the early event-

driven programming models, the programmer needed to explicitly define an object for 

holding this state, and to manage all these objects. Everything is much simpler in Seastar, 

with C++11's lambdas: The capture syntax [i] in the above example means that the value of 

i, as it existed when incr() was called, is captured into the lambda. The lambda is not just a 

function - it is in fact an object, with both code and data. In essence, the compiler created for 

us automatically the state object, and we neither need to define it, nor to keep track of it (it 

gets saved together with the continuation, when the continuation is deferred, and gets 

deleted automatically after the continuation runs). 

One implementation detail worth understanding is that when a continuation has captured 

state and is run immediately, this capture incurs no runtime overhead. However, when the 

continuation cannot be run immediately (because the future is not yet ready) and needs to 

be saved till later, memory needs to be allocated on the heap for this data, and the 

continuation's captured data needs to be copied there. This has runtime overhead, but it is 

unavoidable, and is very small compared to the parallel overhead in the threaded 

programming model (in a threaded program, this sort of state usually resides on the stack of 

the blocked thread, but the stack is much larger than our tiny capture state, takes up a lot of 

memory and causes a lot of cache pollution on context switches between those threads). 

In the above example, we captured i by value - i.e., a copy of the value of i was saved into 

the continuation. C++ has two additional capture options: capturing by reference and 

capturing by move. 
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Using capture-by-reference in a continuation is almost always a mistake, and would lead to 

serious bugs. For example, if in the above example we captured a reference to i, instead of a 

copy to it, 

future<int> incr(int i) { 

    using namespace std::chrono_literals; 

    return sleep(10ms).then([&i] { return i + 1; });   // The "&" here is wrong. 

} 

this would have meant that the continuation would contain the address of i, not its value. 

But i is a stack variable, and the incr() function returns immediately, so when the 

continuation eventually gets to run, long after incr() returns, this address will contain 

unrelated content. 

Using capture-by-move in continuations, on the other hand, is valid and very useful in Seastar 

applications. By moving an object into a continuation, we transfer ownership of this object to 

the continuation, and make it easy for the object to be automatically deleted when the 

continuation ends. For example, consider an ordinary (synchronous) function taking a 

std::unique_ptr. 

int do_something(std::unique_ptr<T> obj) { 

     // do some computation based on the contents of obj, 

     // let's say the result is 17 

     return 17; 

     // here obj goes out of scope so the compiler delete()s it. 
} 

By using unique_ptr in this way, the caller passes an object to the function, but tells it the 

object is now its exclusive responsibility - and when the function is done with the object, it 

should delete the object. How do we do the same in an asynchronous function? We end up 

needing to use the unique_ptr in a continuation. The following won't work: 

future<int> slow_do_something(std::unique_ptr<T> obj) { 

    using namespace std::chrono_literals; 

    return sleep(10ms).then([obj] { 

         return do_something(std::move(obj))}); // WON'T COMPILE 

} 

The problem is that a unique_ptr cannot be passed into a continuation by value (this is 

that the “[obj]” is trying to do), as this would require copying it, which is forbidden because 

it violates the guarantee that only one copy of this pointer exists. We can, however, move 

obj into the continuation: 
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future<int> slow_do_something(std::unique_ptr<T> obj) { 

    using namespace std::chrono_literals; 

    return sleep(10ms).then([obj = std::move(obj)] { 

        return do_something(std::move(obj))}); 

} 

Here the use of std::move() causes obj's move-assignment is used to move the object 

from the outer function into the continuation. C++11's notion of move (move semantics) is 

similar to a shallow copy, followed by invalidating the source copy (so that the two copies do 

not co-exist, as forbidden by unique_ptr). After moving obj into the continuation, the top-

level function can no longer use it (in this case this is of course fine, because we return 

anyway). 

The [obj = ...] capture syntax we used here is new to C++14. This is the main reason 

why Seastar requires C++14, and does not support older C++11 compilers.  
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5 The virtio-rdma Component 

As a part of the RDMA virtualization design that we described in Deliverable 2.13 (Hypervisor 

Architecture, [2]), virtio-rdma is the major component on the guest OS. It presents itself as an 

Ethernet device on the guest and takes over the control of communications that are 

generated by the guest application. 

Figure 6 is a general architecture of guest OS that is using virtio-rdma for inter-VM 

communication. Basically, two types of inter-VM communication are supported: shared 

memory for VMs on the same host, and virtualized RDMA for VMs on different hosts. virtio-

rdma shares part of the route information from the host in order to know whether the 

communication endpoint is on the same host or on a remote host, and then to decide which 

protocol to use. 

On the other hand, virtio-rdma may be used by guest applications that are implemented with 

socket or RDMA verbs API. It uses different RDMA virtualization mechanisms to support 

socket and RDMA verbs API, which were presented in detail in the Hypervisor deliverable 

D2.13. For guest applications that are implemented with RDMA verbs API but still involve 

inter-VM communication on the same host, shared memory will not be used as it is not 

implemented for the RDMA communication stack. However, for such case, RDMA device will 

take care of the shared memory communication by using the shared RDMA memory regions 

among guest, host, and the RDMA device. 

 
Figure 6: Overview of virtio-rdma component in guest OS. 
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The RDMA hardware that may be used for this design are InfiniBand and RoCE (RDMA over 

Converged Ethernet). The RDMA device drivers are installed on the host to support the 

RDMA calls that are passed by virtio-rdma. 

 
Figure 7: OSv architecture with virtio-rdma component. 

virtio-rdma contains several sub modules to support different communication protocols and 

guest applications, as shown in Figure 7. It also requires specific guest OS support, i.e. the 

Open Fabric Enterprise Distribution (OFED) [5] core driver, in order to perform direct 

operation on RDMA memory regions. Open Fabrics is an organization who provides the core 

library for RDMA standard, and other device manufactures, such as Mellanox [6], normally 

provide device drivers based on this core library. This core library needs to be supported on 

OSv later for prototype II (see D2.13, Hypervisor Architecture [2]) next year. 

In D2.13 [2], we described three prototypes of RDMA virtualization design. The corresponding 

part on OSv of the three prototypes are shown in Figure 7. On the left side, ivshmem (a.k.a. 

Nahanni) [30, 31] module is used for shared memory communication, which is available for all 

RDMA virtualization prototypes. It shares part of the host main memory for host-guest and 

guest-guest communication. The ivshmem support on OSv is missing at moment, and it is 

planned to be implemented in the second year of MIKELANGELO project. 

Prototype I has the simplest design on the guest system, which doesn’t involve much new 

implementation. As described in D2.13, the RDMA and poll driver are implemented on the 

host. The polling results will be sent to guest through vhost-user channel. Vhost-user is a new 

implementation based on the kernel vhost in the latest versions of QEMU. It works in the user 

space and uses kernel vhost to initialize the necessary resources that are shared between the 

processes in the user space. However, most of the communications are taking place in the 

user space. In this prototype, virtio-rdma is capable of sending and receiving individual L2 

packets by multiplexing two other device drivers which do the real work, i.e. the real virtio-net 

and the ivshmem. 
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In prototype II, the guest application is directly implemented with RDMA verbs API and a poll 

driver, which will actively poll the RDMA event queues for completion events of the 

communication. The RDMA calls, such as memory allocation/release, preparing work requests 

and communication buffers, are directly performed on the RDMA memory regions by virtio-

rdma with the help of the OFED core driver on the guest. Other RDMA calls, such as endpoint 

management, start/stop data transmission, will be passed through verb-pass module directly 

to the host, and then the RDMA actions will be performed with the kernel RDMA driver on 

the host. 

In prototype III, socket API is used in guest application, with a poll driver implemented inside 

virtio-rdma. The difference between prototype I and III is that, for prototype III, the poll driver 

will directly access the RDMA memory regions without sending any messages to the host 

through a dedicated communication channel like prototype I does, thus prototype III reduces 

the amount of messages and notifications between guest and host dramatically. 

Generally, prototype II should have the best performance of the three, and prototype III 

should have better performance than prototype I. These three prototypes are supposed to 

support different types of use cases and guest applications, and they will be one of the main 

achievements by the end of MIKELANGELO project. 

As prototype I has less implementation effort, it is planned as a starting point for the first 

year of the MIKELANGELO project, and its performance measurements will be used for 

comparison with the other two prototypes later on.  Several new interfaces have to be 

implemented for integrating virtio-rdma on the host side (i.e. via QEMU). Table 1 lists the 

necessary interfaces that will be used to initialize and finalize the virtio-rdma for the guest 

OS. 

virtio_rdma_start virtio_rdma_validate_features 

virtio_rdma_reset virtio_rdma_get_config 

virtio_rdma_instance_init virtio_rdma_set_config 

virtio_rdma_class_init virtio_rdma_set_status 

virtio_register_types virtio_rdma_guest_notifier_pending 

virtio_rdma_get_features virtio_rdma_guest_notifier_mask 

virtio_rdma_bad_features virtio_rdma_load 

virtio_rdma_set_features virtio_rdma_save 

Table 1: Basic virtio-rdma interfaces for Prototype I.  
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6 Monitoring OSv 

OSv images can optionally include an “httpserver” module which can be used to enable 

remote monitoring of an OSv VM. “httpserver” is a small and simple HTTP server that runs in 

a thread, and implements a REST API, i.e., an HTTP-based API, for remote inquiries or control 

of the running guest. The reply of each of these HTTP requests is in the JSON format. 

The complete REST API is described below, but two requests are particularly useful for 

monitoring a running guest: 

1. “/os/threads” returns the list of threads on the system, and some information and 

statistics on each thread.  This includes each thread’s numerical id and string name, 

the CPU number on which it last ran, the total amount of CPU time this thread has 

used, the number of context switches and preemptions it underwent, and the number 

of times it migrated between CPUs. 

The OSv distribution includes a script, scripts/top.py, which uses this API to let a 

user get “top”-like output for a remote OSv guest: It makes a “/os/threads” 

request every few seconds, and subtracts the total amount of CPU time used by each 

thread in this and the previous iteration; The result is the percentage of CPU used by 

each thread, which we can now sort and show the top CPU-using threads (like in 

Linux’s “top”), and some statistics on each (e.g., similar subtraction and division can 

give us the number of context switches per second for each of those threads). 

2. “/trace/count” enables counting of a specific tracepoint, or returns the counts of all 

enabled tracepoints. 

OSv‘s tracepoints are a powerful debugging and statistics mechanism, inspired by a 

similar feature in Linux and Solaris: In many places in OSv’s source code, a “trace” call 

is embedded. For example, we might have a “memory_malloc” trace in the 

beginning of the malloc() function, or “sched_switch” trace when doing a 

context switch. Normally, this trace doesn’t do anything - it appears in the executable 

as a 5-byte “NOP” (do-nothing) instruction and has almost immeasurable impact on 

the speed of the run. When we want to enable counting of a specific tracepoint, e.g., 

count the number of sched_switch events, we replace these NOPs by a jump to a 

small piece of code which increments a per-cpu counter. Because the counter is per-

cpu, and has no atomic-operation overhead (and moreover, usually resides in the 

CPU’s cache), counting can be enabled even for extremely frequent tracepoints 

occurring millions of times each second (e.g., “memory_malloc”) - with a hardly 

noticeable performance degradation of the workload. Only when we actually query 

the counter, do we need to add these per-cpu values to get the total one. 

The OSv distribution includes a script, scripts/freq.py, which uses this API to 
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enable one or more counters, to retrieve their counts every few seconds, and display 

the frequency of the event (subtraction of count at two different times, divided by the 

time interval’s length). This script makes it very convenient to see, for example, the 

total number of context switches per second while the workload is running, and how 

it relates, for example, to the frequency of mutex_lock_wait, and so on. 

The list of tracepoints supported by OSv at the time of this writing includes over 300 

different tracepoints, and is shown here: 

access_scanner 
add_read_mapping 
app_destroy 
app_join 
app_join_ret 
app_main 
app_main_ret 
app_request_termination 
app_request_termination_ret 
app_termination_callback_added 
app_termination_callback_fired 
async_timer_task_cancel 
async_timer_task_create 
async_timer_task_destroy 
async_timer_task_fire 
async_timer_task_insert 
async_timer_task_misfire 
async_timer_task_remove 
async_timer_task_reschedule 
async_timer_task_shutdown 
async_worker_fire 
async_worker_fire_ret 
async_worker_started 
async_worker_timer_fire 
async_worker_timer_fire_ret 
callout_init 
callout_reset 
callout_stop 
callout_stop_wait 
callout_thread_dispatching 
callout_thread_retry 
callout_thread_waiting 
callout_thread_waking 
clear_pte 
condvar_wait 
condvar_wake_all 
condvar_wake_one 
drop_read_cached_page 
drop_write_cached_page 
elf_load 
elf_lookup 
elf_lookup_addr 
elf_unload 
epoll_create 
epoll_ctl 
epoll_ready 
epoll_wait 
function entry 
function exit 

pool_alloc 
pool_free 
pool_free_different_cpu 
pool_free_same_cpu 
remove_mapping 
sampler_tick 
sched_idle 
sched_idle_ret 
sched_ipi 
sched_load 
sched_migrate 
sched_preempt 
sched_pull 
sched_queue 
sched_sched 
sched_switch 
sched_wait 
sched_wait_ret 
sched_wake 
sched_yield 
sched_yield_switch 
synch_msleep 
synch_msleep_expired 
synch_msleep_wait 
synch_wakeup 
synch_wakeup_one 
synch_wakeup_one_waking 
synch_wakeup_waking 
tcp_input_ack 
tcp_output 
tcp_output_cant_take_inp_lock 
tcp_output_error 
tcp_output_just_ret 
tcp_output_resched_end 
tcp_output_resched_start 
tcp_output_ret 
tcp_output_start 
tcp_state 
tcp_timer_tso_flush 
tcp_timer_tso_flush_err 
tcp_timer_tso_flush_ret 
thread_create 
timer_cancel 
timer_fired 
timer_reset 
timer_set 
tso_flush_cancel 
tso_flush_fire 
tso_flush_sched 

vfs_isatty 
vfs_isatty_err 
vfs_isatty_ret 
vfs_link 
vfs_link_err 
vfs_link_ret 
vfs_lseek 
vfs_lseek_err 
vfs_lseek_ret 
vfs_lstat 
vfs_lstat_err 
vfs_lstat_ret 
vfs_mkdir 
vfs_mkdir_err 
vfs_mkdir_ret 
vfs_mknod 
vfs_mknod_err 
vfs_mknod_ret 
vfs_open 
vfs_open_err 
vfs_open_ret 
vfs_pread 
vfs_pread_err 
vfs_pread_ret 
vfs_pwrite 
vfs_pwrite_err 
vfs_pwrite_ret 
vfs_pwritev 
vfs_pwritev_err 
vfs_pwritev_ret 
vfs_readdir 
vfs_readdir_err 
vfs_readdir_ret 
vfs_rename 
vfs_rename_err 
vfs_rename_ret 
vfs_rmdir 
vfs_rmdir_err 
vfs_rmdir_ret 
vfs_stat 
vfs_stat_err 
vfs_stat_ret 
vfs_statfs 
vfs_statfs_err 
vfs_symlink 
vfs_symlink_err 
vfs_symlink_ret 
vfs_truncate 
vfs_truncate_err 
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in_lltable_lookup 
in_lltable_lookup_fast 
inpcb_free 
inpcb_ref 
inpcb_rele 
jvm_balloon_close 
jvm_balloon_fault 
jvm_balloon_free 
jvm_balloon_move 
jvm_balloon_new 
map_arc_buf 
memory_free 
memory_huge_failure 
memory_malloc 
memory_malloc_large 
memory_malloc_mempool 
memory_malloc_page 
memory_mmap 
memory_mmap_err 
memory_mmap_ret 
memory_munmap 
memory_munmap_err 
memory_munmap_ret 
memory_page_alloc 
memory_page_free 
memory_realloc 
memory_reclaim 
memory_wait 
mmu_vm_fault 
mmu_vm_fault_ret 
mmu_vm_fault_sigsegv 
msix_interrupt 
msix_migrate 
mutex_lock 
mutex_lock_wait 
mutex_lock_wake 
mutex_receive_lock 
mutex_send_lock 
mutex_try_lock 
mutex_unlock 
net_packet_handling 
net_packet_in 
net_packet_out 
pcpu_worker_item_end_wait 
pcpu_worker_item_invoke 
pcpu_worker_item_set_finished 
pcpu_worker_item_signal 
pcpu_worker_item_wait 
pcpu_worker_sheriff_started 
poll 
poll_drain 
poll_err 
poll_ret 
poll_wake 

 

unmap_arc_buf 
vfs_access 
vfs_access_err 
vfs_access_ret 
vfs_chdir 
vfs_chdir_err 
vfs_chdir_ret 
vfs_chmod 
vfs_chmod_err 
vfs_chmod_ret 
vfs_close 
vfs_close_err 
vfs_close_ret 
vfs_dup 
vfs_dup3 
vfs_dup3_err 
vfs_dup3_ret 
vfs_dup_err 
vfs_dup_ret 
vfs_fallocate 
vfs_fallocate_err 
vfs_fallocate_ret 
vfs_fchdir 
vfs_fchdir_err 
vfs_fchdir_ret 
vfs_fchmod 
vfs_fchmod_ret 
vfs_fchown 
vfs_fchown_ret 
vfs_fcntl 
vfs_fcntl_err 
vfs_fcntl_ret 
vfs_fstat 
vfs_fstat_err 
vfs_fstat_ret 
vfs_fstatfs 
vfs_fstatfs_err 
vfs_fstatfs_ret 
vfs_fsync 
vfs_fsync_err 
vfs_fsync_ret 
vfs_ftruncate 
vfs_ftruncate_err 
vfs_ftruncate_ret 
vfs_futimens 
vfs_futimens_err 
vfs_futimens_ret 
vfs_getcwd 
vfs_getcwd_err 
vfs_getcwd_ret 
vfs_ioctl 
vfs_ioctl_err 
vfs_ioctl_ret 

 

 

vfs_truncate_ret 
vfs_unlink 
vfs_unlink_err 
vfs_unlink_ret 
vfs_utimensat 
vfs_utimensat_err 
vfs_utimensat_ret 
vfs_utimes 
vfs_utimes_err 
vfs_utimes_ret 
virtio_add_buf 
virtio_blk_make_request_readonly 
virtio_blk_make_request_seg_max 
virtio_blk_read_config_blk_size 
virtio_blk_read_config_capacity 
virtio_blk_read_config_geometry 
virtio_blk_read_config_ro 
virtio_blk_read_config_seg_max 
virtio_blk_read_config_topology 
virtio_blk_read_config_wce 
virtio_blk_req_err 
virtio_blk_req_ok 
virtio_blk_req_unsupp 
virtio_blk_strategy 
virtio_blk_wake 
virtio_disable_interrupts 
virtio_enable_interrupts 
virtio_kicked_event_idx 
virtio_net_fill_rx_ring 
virtio_net_fill_rx_ring_added 
virtio_net_rx_packet 
virtio_net_rx_wake 
virtio_net_tx_failed_add_buf 
virtio_net_tx_no_space_calling_gc 
virtio_net_tx_packet 
virtio_net_tx_packet_size 
virtio_net_tx_xmit_one_failed_to_pos

t 
virtio_wait_for_queue 
vring_get_buf_elem 
vring_get_buf_finalize 
vring_get_buf_gc 
vring_get_buf_ret 
vring_update_used_event 
waitqueue_wait 
waitqueue_wake_all 
waitqueue_wake_one 
xen_irq 
xen_irq_exec 
xen_irq_exec_ret 
xen_irq_ret 

Beyond these two useful REST API requests, OSv supports many more requests, overviewed 

here. Note that this overview omits a lot of important information, such as the parameters 

that each request takes, or the type of its return value. For the full information, please refer to 



Project No. 645402 

MIKELANGELO Deliverable D2.16 

 

 

Public deliverable 

© Copyright Beneficiaries of the MIKELANGELO Project Page 52 of 60 

the modules/httpserver/api-doc/listings directory in OSv’s source distribution [28]. OSv also 

optionally provides a “swagger” GUI to let a user use these requests by filling a form, instead 

of remembering the request’s URL and parameters. 

● /api/batch: Perform batch API calls in a single command. Commands are 

performed sequentially and independently. Each command has its own response 

code. 

● /api/stop: Stopping the API server causing it to terminate. If the API server runs as 

the main application, it would cause the system to terminate. 

● /app: Run an application with its command line parameters. 

● /env: List environment variables, return the value of a specific environment variable, 

or modify or delete one - depending if the HTTP method used is GET, POST, or 

DELETE respectively. 

● /file: Return information about an existing file or directory, delete one, create one, 

rename one, or upload one.  

● /fs/df: Report filesystem usage of one mount point or all of them.  

● /hardware/processor/flags: List all present processor features. 

● /hardware/firmware/vendor 

● /hardware/hypervisor: Returns name of the hypervisor OSv is running on. 

● /hardware/processor/count 

● /network/ifconfig: Get a list of all the interfaces configuration and data. 

● /network/route 

● /os/name 

● /os/version 

● /os/vendor 

● /os/uptime: Returns the number of seconds since the system was booted. 

● /os/date: Returns the current date and time. 

● /os/memory/total:  Returns total amount of memory usable by the system (in 

bytes). 

● /os/memory/free:  Returns the amount of free memory in the system (in bytes). 

● /os/poweroff 

● /os/shutdown 

● /os/reboot 

● /os/dmesg: Returns the operating system boot log. 

● /os/hostname: Get or set the host’s name. 

● /os/cmdline: Get or set the image’s default command line. 

● /trace/status, /trace/event, /trace/count, /trace/sampler, 

/trace/buffers: Enable, disable and query tracepoints. 

The full-stack MIKELANGELO Instrumentation and Monitoring system has been designed with 

a flexible plugin architecture. An OSv monitoring plugin is being developed that will be able 
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to retrieve all useful data from an OSv guest using the OSv REST API described. Indeed, the 

OSv monitoring plugin may gather data from multiple OSv instances. The available 

monitoring data, including thread and tracepoint data as well as hardware configuration, can 

be discovered at runtime and only the specific data of interest captured, processed and 

published to the monitoring back-end.  
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7 Evaluation Baseline 

The new guest operating system components described in this document - OSv, Seastar and 

virtio-rdma - are poised to improve the performance of various cloud and HPC workloads, 

including the MIKELANGELO use cases [3, 4, 5, 6]. However, each of these complete 

workloads is complex and difficult to continuously benchmark as part of the ongoing 

development effort of the guest operating system. For this purpose, we want to choose 

several simple benchmark which each is simple to install and test repeatedly, and each 

stresses one particular area that the new guest OS is supposed to improve. 

In the following subsections, we chose three benchmarks that we will strive to improve 

throughout the project: 

1. One simple benchmark which represents an HPC workload which uses RDMA 

(NetPIPE). 

2. Two simple benchmarks which represents an I/O-intensive TCP/IP server (Netperf and 

Memcached). 

The first benchmark will primarily demonstrate the improvements provided by RDMA-verbs 

virtualization in virtio-rdma. The other benchmarks will demonstrate the improvements from 

three different components of the guest operating system: from virtio-rdma’s support for 

unmodified socket applications, from OSv’s faster kernel and network stack, and from 

rewriting an application to Seastar. 

The baseline of both benchmark will be running the unmodified benchmark application on 

the Linux guest operating system. 

7.1 Benchmarking virtio-rdma 

7.1.1 Benchmarks Used 

The following is the list of benchmarks packages that will be used to measure performance of 

RDMA-related components of MIKELANGELO. The list will be revised throughout the 

MIKELANGELO project. 

● NetPerf [10], a benchmark that can be used to measure various aspect of networking 

performance, e.g. latency, bandwidth on TCP or UDP. It will help get the 

communication performance of inter-VM communication using shared memory and 

RDMA virtualization solutions. 

● NetPIPE [11], a protocol independent network performance evaluator. It performs 

ping-ping test between two processes either over network or SMP with increasing 
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message sizes. This benchmark has full support of MPI-2 application, thus is 

commonly used to evaluate performance of a HPC environment. 

7.1.2 Testbed 

The testbed system consists of two servers, each running 2 virtual machines. These two virtual 

machines are able to communicate through Ethernet (Intel I217-LM e1000) or InfiniBand 

(Mellanox ConnectX-3 FDR) network interconnects between the hosts or through shared 

memory inside the host. 

The server is a HP workstation with a 4-core single node (Intel Core i5-4590 3,30GHz) 

processor, and 4GB RAM memory with the host OS being Ubuntu 14.04 LTS. 

The host hypervisor is KVM (3.18.0)/QEMU (2.3.0), and the VMs run guest OS the Ubuntu 

14.04.2 server edition, each configured with four vCPU (assigned with four cores on the host) 

and 2GB of memory. 

An additional HPC testbed, provided by HLRS, is described in D2.19 “The first MIKELANGELO 

architecture” [1]. It will be used to further evaluate the performance gains. 

7.1.3 Experimental Methodology 

● For inter-VM communication on different hosts, we run single VM on 2 to 16 hosts. 

The hosts are connected via Ethernet and InfiniBand network. Then we compare the 

network performance in following network modes:  

○ TCP, 

○ Ethernet over InfiniBand, 

○ IP over InfiniBand, 

○ RoCE, 

○ InfiniBand. 

● For inter-VM communication on the same host, we run 2 to 8 VMs. 

7.2 TCP/IP Benchmark 

The purpose of this benchmark is to evaluate the performance improvement that 

MIKELANGELO as a whole, and its various separate components, can bring to TCP-based 

applications such as network servers. Such applications could benefit from virtio-rdma’s 

speed-ups for unmodified socket applications (including special support for communicating 

VMs on the same host), from OSv’s faster kernel and network stack, and from rewriting an 

application to Seastar. 
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● Netperf [10], already mentioned above, can measure some aspects of the network 

performance of unmodified applications using TCP through the socket API. 

Netperf measures the maximum TCP throughput in long streams (“TCP_STREAM” 

benchmark) as well as latency (“TCP_RR”). 

● Memcached [8] is a popular cloud application used for caching of frequently 

requested objects and lowering the load on slower database servers. With short 

requests and responses, which are typical, memcached’s load is different from Netperf 

above in that it emphasizes not one long TCP stream, but rather processing a huge 

number of separate connections from many concurrent clients. 

The memcached server will be loaded by the memaslap [12] load generator and 

benchmark tool, which can simulate a configurable memcached workload from many 

clients, and measure the resulting throughput (transactions per second).  
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8 Key Takeaways 

● This deliverable describes the architecture of the guest operating system - the 

operating system running on each VM in the MIKELANGELO cloud. 

● This architecture improves the performance of existing cloud and HPC applications, 

originally written for Linux, with two major components, OSv and vRDMA: 

○ OSv is a new operating system designed specifically for running a single 

application in a cloud VM. 

OSv is limited to a single application, with a single process but potentially 

many threads. OSv can run existing Linux executables if they are relocatable 

(i.e., a shared object (“.so”) or a PIE), and also use existing Linux shared 

libraries. Other executables will need to be re-compiled from source to be 

relocatable. 

○ vRDMA speeds up the communication between different guests which 

communicate with the traditional socket API or with the RDMA verbs API: 

■ For applications using the socket API, vRDMA transparently replaces 

the slow IP-based communication with more efficient mechanisms: 

RDMA (Remote Direct Memory Access) when the guests are on 

different hosts, or shared memory when the guests are co-located on 

the same host. 

■ For applications which use the RDMA verbs API, such as those that use 

MPI 2’s one-sided communication or MPI 3’s RMA, vRDMA provides an 

efficient implementation of these RDMA verbs, again over RDMA or 

shared memory, as appropriate. 

● OSv also improves the agility of the application deployment, by reducing boot time 

and image size, by offering HTTP-based monitoring and control, and by proposing a 

new workflow for composing these application images on-the-fly from pre-compiled 

components using the MIKELANGELO Package Manager. 

● Additionally, a new API, “Seastar”, is proposed for new I/O-intensive asynchronous 

applications such as network servers. Seastar can significantly improve the 

performance of such applications over existing applications which use traditional APIs 

like sockets and threads.  

○ Seastar applications are more efficient and more scalable (to many-core and 

many-socket machines) because they avoid slow and unscalable locks and 

atomic operations, and instead use a sharded (share-nothing) design. 

○ Seastar uses a future-and-continuations programming model to allow writing 

complex asynchronous applications, not just simple packet processors. 

● We then introduced the monitoring capabilities built directly into OSv. These provide 

a thorough insight into the behaviour of the application and the kernel itself and are 
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well suited for the overarching MIKELANGELO monitoring facility integrated as part of 

work package 5. 

● We conclude simple benchmarks that are going to be used initially to measure the 

performance improvements of MIKELANGELO’s guest operating system, compared to 

the baseline operating system Linux. These benchmarks measure the performance of 

TCP-based network applications, as well as RDMA-verbs-based HPC applications. 
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