
Project No. 645402

MIKELANGELO Deliverable D6.1

Public deliverable

Ê Copyright Beneficiaries of the MIKELANGELO Project Page 1 of 94

MIKELANGELO

D6.1

First report on the Architecture and Implementation

Evaluation

Workpackage 6 Infrastructure Integration

Author(s) John Kennedy, Marcin Spoczynski INTEL

Gregor Berginc, Daniel VladuĢiĽ XLAB

Uwe Schilling, Carlos Diaz, Nico Struckmann USTUTT

Peter Chronz, Maik Srba GWDG

Shiqing Fan HUA

Beno´t Canet, Nadav HarõEl SCYLLA

Niv Gilboa, Gabriel Scalosub BGU

Matej AndrejaĢiĽ PIPISTREL

Reviewer Nico Struckmann USTUTT

Reviewer Gregor Berginc XLAB

Dissemination

Level
Public

Date Author Comments Version Status

7 Mar 2016 John Kennedy Initial structure V0.0 Draft

27 June 2016 All WP6

Partners

Initial draft for review V0.1 Review

30 June 2016 All WP6

Partners

Final version V1.0 Final

Project No. 645402

MIKELANGELO Deliverable D6.1

Public deliverable

Ê Copyright Beneficiaries of the MIKELANGELO Project Page 2 of 94

Executive Summary

The MIKELANGELO project [1] seeks to improve the I/O performance and security of Cloud

and HPC deployments running on the OSv [2] and sKVM [3] software stack. The project has

now reached its halfway point. Architectures for all components have been prepared, and

implementations for most are now available.

An evaluation of the individual components, integrated stacks, use cases and the

development workflow of MIKELANGELO is presented in this document. The emphasis is on

reviewing their architecture and impl ementation.

No unexpected architectural issues have been identified. Standalone testing of

implementations of individual components has revealed that they deliver the performance

improvements expected.

The integration of the Cloud and HPC stacks, and evaluation through the Cloud Bursting, HPC

OpenFOAM [4] and Big Data use cases, has also revealed improvements in performance in

various scenarios. However, these efforts have identified various gaps in functionality, and a

number of locations and configuratio ns of the MIKELANGELO stack that do not yet deliver

the expected performance. Missing functionality has already been added. Detailed analysis of

performance issues has begun and has already helped identify bugs and bottlenecks that,

once addressed, are transforming the initial results. Several of the MIKELANGELO

components are already live open-source projects and MIKELANGELO-developed

enhancements are being continuously upstreamed and released publically.

The evaluation activities outlined in this deliverable have helped confirm, and drive,

significant progress to-date. The ongoing evaluation efforts will continue to play a key role in

identifying new requirements and opportunities for enhancements that will help maximise

the impact of the project.

Acknowledgement

The work described in this document has been conducted within the Research & Innovation

action MIKELANGELO (project no. 645402), started in January 2015, and co-funded by the

European Commission under the Information and Communication Technologies (ICT) theme of

the H2020 framework programme (H2020-ICT-07-2014: Advanced Cloud Infrastructures and

Services)

Project No. 645402

MIKELANGELO Deliverable D6.1

Public deliverable

Ê Copyright Beneficiaries of the MIKELANGELO Project Page 3 of 94

Table of contents

1 Introduction ... 9

2 Component Evaluation .. 10

2.1 Introduction .. 10

2.2 Linux Hypervisor IO Core Management .. 10

2.2.1 Architectural Evaluation .. 10

2.2.2 Performance Evaluation .. 11

2.2.3 Implementation Evaluation ... 15

2.3 Virtual RDMA ... 15

2.3.1 Architectural Evaluation .. 15

2.3.2 Performance Evaluation .. 16

2.3.3 Implementation Evaluation ... 19

2.4 Unikernel Guest Operating Systems ... 20

2.4.1 Architectural Evaluation .. 20

2.4.2 Performance Evaluation .. 22

2.4.2.1 Redis .. 22

2.4.2.2 memcached .. 23

2.4.3 Implementation Evaluation ... 23

2.5 Application Package Management.. 24

2.5.1 Architecture Evaluation ... 24

2.5.2 Performance Evaluation .. 26

2.5.2.1 First Time OSv and Application Users ... 27

2.5.2.2 Application Package Authors ... 27

2.5.3 Implementation Evaluation ... 29

2.5.3.1 Package Metadata .. 30

2.5.3.2 Application Packages .. 31

2.5.3.3 Application Image Composition Caveats .. 32

2.5.4 Additional Observations ... 33

2.6 Monitoring .. 34

2.6.1 Architecture Evaluation ... 34

Project No. 645402

MIKELANGELO Deliverable D6.1

Public deliverable

Ê Copyright Beneficiaries of the MIKELANGELO Project Page 4 of 94

2.6.2 Performance Evaluation .. 35

2.6.3 Implementation Evaluation ... 39

2.6.4 Additional Observations ... 40

2.7 Hosted Application Acceleration .. 41

2.7.1 Architectural Evaluation .. 41

2.7.2 Performance Evaluation .. 41

2.7.3 Implementation Evaluation ... 43

2.8 Side Channel Attack Mitigation .. 43

2.8.1 Architectural Evaluation .. 43

2.8.2 Performance Evaluation .. 44

2.8.3 Implementation Evaluation ... 44

3 Full Stack Evaluation ... 46

3.1 Introduction .. 46

3.2 Full Stack for Cloud ... 46

3.2.1 sKVM with OpenStack ... 46

3.2.1.1 IOcm .. 46

3.2.1.2 SCAM ... 47

3.2.1.3 Virtual RDMA.. 48

3.2.2 Snap in the Cloud.. 49

3.2.3 OSv ... 49

3.3 Full Stack for HPC ... 50

3.3.1 sKVM with HPC .. 51

3.3.1.1 IOcm .. 51

3.3.1.2 Virtual RDMA.. 52

3.3.1.3 SCAM ... 52

3.3.2 Snap ... 52

3.3.3 OSv ... 53

3.3.4 Evaluation of the HPC-Stack ... 53

3.3.4.1 Functional Tests .. 55

3.3.4.2 Performance Measurements .. 55

Project No. 645402

MIKELANGELO Deliverable D6.1

Public deliverable

Ê Copyright Beneficiaries of the MIKELANGELO Project Page 5 of 94

3.3.4.3 Evaluation of MPI and NFS inside OSv ... 58

3.3.5 Conclusions and Next Steps ... 59

4 Use Case Architecture and Implementation Evaluation ... 61

4.1 Introduction .. 61

4.2 Case Study: Cloud Bursting .. 61

4.2.1 ScyllaDB .. 61

4.2.1.1 Test Bed .. 61

4.2.1.2 Workloads ... 62

4.2.1.3 Cassandra results .. 63

4.2.1.4 Scylla results ... 63

4.2.2 Evaluation and Validation of the Cloud bursting use case.. 64

4.3 Case Study: OpenFOAM Cloud ... 66

4.3.1 Integration Evaluation ... 69

4.3.1.1 Running OpenFOAM in OSv... 69

4.3.1.2 Parallelisation of OpenFOAM in OSv .. 69

4.3.1.3 sKVM ... 72

4.3.1.4 OpenFOAM Application Packages ... 72

4.3.1.5 Telemetry with Snap .. 73

4.3.2 End-user Evaluation ... 73

4.4 Case Study: Big Data Stack in OSv ... 74

4.4.1 Running with OSv ... 75

4.4.1.1 Apache Storm .. 75

4.4.1.2 Hadoop HDFS .. 76

4.4.2 Performance Evaluation .. 76

5 Development Workflow Evaluation .. 78

6 Observations and Priorities .. 80

6.1 Individual Components .. 80

6.1.1 Linux Hypervisor IO Core Management- sKVMõs IOcm ... 80

6.1.2 Virtual RDMA - sKVMõs virtual RDMA ... 80

6.1.3 Unikernel Guest Operation System - OSv .. 80

Project No. 645402

MIKELANGELO Deliverable D6.1

Public deliverable

Ê Copyright Beneficiaries of the MIKELANGELO Project Page 6 of 94

6.1.4 Application Package Management - MPM ... 81

6.1.5 Monitoring - snap ... 81

6.1.6 Hosted Application Acceleration - Seastar .. 82

6.1.7 Side Channel Attack Mitigation - sKVMõs SCAM .. 82

6.2 Integrated Stacks .. 82

6.2.1 Full Stack for Cloud .. 82

6.2.2 Full Stack for HPC .. 83

6.3 Case Studies ... 84

6.3.1 Cloud Bursting .. 84

6.3.2 Cancellous Bones Simulation .. 84

6.3.3 Aerodynamic Maps... 84

6.3.4 Big Data .. 85

6.4 Development Workflow ... 85

7 Concluding Remarks .. 87

8 References and Applicable Documents .. 88

Appendix A. HPC Full Stack Functional Test Results ... 91

A.1 Test 1 - Test VM Instantiation ... 91

A.2 Test 2 - CPU count; CPU Pinning .. 91

A.3 Test 3 - Multiple VMs per Node ... 92

A.4 Test 4 - Interactive non-VM Jobs ... 93

A.5 Test 5 - Qsub Submitted Jobs ... 93

Project No. 645402

MIKELANGELO Deliverable D6.1

Public deliverable

Ê Copyright Beneficiaries of the MIKELANGELO Project Page 7 of 94

Table of Figures

Figure 1. IO Core Management test system setup. ... 11

Figure 2. Performance evaluation of elvis-X for netperf TCP stream. ... 12

Figure 3. Performance evaluation of io-manager for netperf TCP stream. 13

Figure 4. Performance evaluation of elvis-X for Apache HTTP server. ... 14

Figure 5. Performance evaluation of io-manager for Apache HTTP server. 15

Figure 6. OpenFOAM 15 minute test with 2, 4 and 8 processes on Ubuntu and OSv. 17

Figure 7. OpenFOAM 1 hour test with 2, 4 and 8 processes on Ubuntu and OSv. 18

Figure 8. OpenFOAM 15 minute test with 2 and 4 processes on Ubuntu (local testbed). 19

Figure 9. OpenFOAM 1 hour test with 2 and 4 processes on Ubuntu (local testbed). 19

Figure 10. Redis performance evaluation. ... 22

Figure 11. memchached performance evaluation. ... 23

Figure 12. Architecture of MIKELANGELOõs application package management. 25

Figure 13. Snap task workflow for 500-node test. ... 38

Figure 14. Snap Grafana dashboard illustrating mean CPU utilisation across 500 nodes. 38

Figure 15. Automated Continuous Integration t ests managed by Travis CI. 39

Figure 16. Badges assigned to the MIKELANGELO developed OpenFOAM collector plugin. .. 40

Figure 17. Seastar httpd performance evaluation. ... 42

Figure 18. Runtime of the Cancellous Bones Simulation over different numbers of Cores. 56

Figure 19. Comparison of the number of transactions in Cassandra and ScyllaDB cluster. 64

Figure 20. Reduced performance during expansion process with ScyllaDB 1.1. 65

Figure 21. Almost no performance loss during expansion process with ScyllaDB 1.2. 66

Figure 22. Launching an experiment is integrated into OpenStack Horizon dashboard. 68

Figure 23. OpenFOAM simulations dashboard. .. 68

Figure 24. Visualisation of simulation parameters in Grafana, collected with snap. 68

Figure 25. Comparison of run times required by OpenFOAM on a small input case................... 70

Figure 26. Comparison of run times required by OpenFOAM on a medium input case. 71

Figure 27. MIKELANGELOõs Continuous Integration environment. .. 79

Figure 28. Testing IOcm CPU pinning on the HPC Stack. .. 92

Figure 29. Two VMs generated on separate nodes and running the same job in parallel. 93

Project No. 645402

MIKELANGELO Deliverable D6.1

Public deliverable

Ê Copyright Beneficiaries of the MIKELANGELO Project Page 8 of 94

Table of Tables

Table 1. MIKELANGELO Package Management performance evaluation. .. 26

Table 2. Application Package Management tool comparison. .. 27

Table 3. Comparing telemetry frameworks collecting 10 probes. .. 36

Table 4. Comparing telemetry frameworks collecting 50 probes. .. 37

Table 5. Comparing telemetry frameworks collecting 100 probes. ... 37

Table 6. Cancellous Bones environment setup.. 56

Table 7. Runtime measurements of VM in seconds. Shaded cells are considered outliers. 57

Table 8. Runtime measurements without VM (bare metal) in seconds. .. 57

Table 9. Queries metrics for Cassandra cluster. .. 63

Table 10. Queries metrics for ScyllaDB cluster. ... 63

Table 11. Comparing OSv-based image to equivalent Ubuntu-based image. 72

Table 12. TestDFSIO results in various guest operating systems. .. 76

Project No. 645402

MIKELANGELO Deliverable D6.1

Public deliverable

Ê Copyright Beneficiaries of the MIKELANGELO Project Page 9 of 94

1 Introduction

The MIKELANGELO project seeks to improve the I/O performance and security of Cloud and

HPC software running on top of the OSv and sKVM software stack.

The architecture of the MIKELANGELO project at Month 18 of the project is documented in

Deliverable D2.20, The Intermediate MIKELANGELO Architecture [5].

This document presents an evaluation of this architecture and its implementation to date.

The technical architecture and the current implementation of a ll components of the

MIKELANGELO stack are evaluated in Chapter 2. The architectural approach of the

MIKELANGELO components are contrasted with alternatives in the marketplace. Both benefits

and limitations of the MIKELANGELO approaches are discussed. Where relevant, Best Known

Methods are described. This chapter also describes the results of functional testing and

benchmarking where possible, and considers planned or potential enhancements and their

expected significance.

The individual components evaluated in Chapter 2 are designed to complement each other

when combined in full stacks for Cloud and HPC deployments. These full stacks are

considered and evaluated in Chapter 3.

Putting it all to work, the overall architecture is evaluated in Chapter 4 by examining several

Case Studies that have each adopted and exercised a selection of MIKELANGELO

components. The experiences from three deployments are reviewed. They cover Cloud

Bursting, an OpenFOAM Cloud HPC scenario, and Big Data leveraging Hadoop HDFS [6] and

Apache Storm [7].

Whilst the previous chapters evaluate the technology developed by MIKELANGELO, the

development workflow designed and adopted by the project is itself examined in Chapter 5.

Chapter 6 gathers the overall observations on the architecture and implementation

evaluation at this stage of the project, and also describes current priorities.

Chapter 7 provides some concluding remarks, and references are provided in Chapter 8.

Project No. 645402

MIKELANGELO Deliverable D6.1

Public deliverable

Ê Copyright Beneficiaries of the MIKELANGELO Project Page 10 of 94

2 Component Evaluation

2.1 Introduction

This chapter evaluates the technical architecture, performance and the current

implementation of individual components of the MIKELANGELO stack. The components

considered are:

Ɓ Linux Hypervisor IO Core Management - sKVMõs IOcm

Ɓ Virtual RDMA - sKVMõs virtual RDMA

Ɓ Unikernel Guest Operation System - OSv

Ɓ Application Package Management - MPM

Ɓ Monitoring - snap [8]

Ɓ Hosted Application Acceleration - Seastar [9]

Ɓ Side Channel Attack Mitigation - sKVMõs SCAM

2.2 Linux Hypervisor IO Core Management

2.2.1 Architectural Evaluation

In the current implementatio n of KVM, each virtual device gets its own vhost thread. This is a

very simple programming model since threads are a convenient abstraction, but not

necessarily the most efficient. In essence, as the number of virtual machines increases, so

does the number of virtual devices, and in turn the number of vhost threads. At some point,

all of these threads start to affect each other, and the overhead of switching between them

gets in the way of the threads doing useful work.

One idea that has been proposed to address this issue from an architectural point of view is

to use shared vhost threads. It turns out that sharing a vhost thread among multiple devices

can reduce overhead, and improve efficiency. Moreover, each shared vhost thread occupies a

core for the sole purpose of processing I/O. To further reduce the contention between the

threads, we disallow the virtual machines to share the cores with vhost threads. This approach

is described and evaluated in the ELVIS paper [10]. One major drawback of ELVIS is its

inability to dynamically adjust the number of cores according to the current workload.

We took upon ourselves to enhance ELVIS with a mechanism to modify the number of shared

vhost threads at run-time. Determining the optimal number of shared vhost thre ads is done

automatically at run-time by the I/O manager. The I/O manager is a user-space application

which continuously monitors the system, and adapts the number of shared threads according

to the current CPU load.

Project No. 645402

MIKELANGELO Deliverable D6.1

Public deliverable

Ê Copyright Beneficiaries of the MIKELANGELO Project Page 11 of 94

Next we evaluate our prototype with th e aforementioned architectural enhancement.

2.2.2 Performance Evaluation

Our test system is comprised of two physical machines: a load generator and a machine that

hosts the Virtual Machines (VMs). Both machines are identical and of type IBM System x3550

M4, equipped with two 8 -core sockets of Intel Xeon E5-2660 CPU running at 2.2 GHz, 56GB

of memory and two Intel x520 dual port 10Gbps NICs. All machines run Ubuntu 14.04 with

Linux 2.18 (guests, host, and load generator) [11]. The hostõs hypervisor is KVM [12] with

QEMU 2.2 [13]. To minimize the benchmarking noise, hyperthreading and all power

management features are disabled in the BIOS.

The machines are connected in a point-to-point fashion as depicted in Figure 1.

Figure 1. IO Core Management test system setup.

Each experiment is executed 5 times, for 60 seconds each. We make sure the variance across

the results (both performance and CPU utilization) is negligible, and present their average.

Benchmark parameters were meticulously chosen in order to saturate the vCPU of each VM.

The experiment evaluates the performance of three basic configurations:

ǒ baseline We use KVM virtio as the state-of-practice representative of

paravirtualization. We denote it as the baseline configuration

ǒ elvis-X Our modified version of vh ost, with a different number of dedicated I/O cores

(1-4), denoted by X

ǒ io -manager Our modified version of vhost driven by the I/O manager which

automatically adjusts the number of I/O cores in response to the current load

With all configurations, we set the number of VMs to be 121 (overcommit) throughout all the

benchmarks, utilizing only one 8-core socket. Each VM is configured with 1 vCPU, 2GB of

1
 We are mostly interested in the first four elvis-X configurations. To achieve balanced results, each I/O

core is assigned equal number of VMs. 12 is evenly divided by 1, 2, 3 and 4.

Project No. 645402

MIKELANGELO Deliverable D6.1

Public deliverable

Ê Copyright Beneficiaries of the MIKELANGELO Project Page 12 of 94

memory and a virtual network interface. All four physical ports are in use and assigned evenly

between VMs. The NICs are connected to the VMs using the standard Linux Bridge.

With the òelvis-Xó configuration, we vary the number of I/O cores from 1 to 4 at the expense

of available VM cores. Given a number of I/O cores, the VMs are assigned in a cyclic fashion

to the remaining cores. For the òbaselineó setup, there is no affinity between activities and

cores, namely, interrupts of the physical I/O devices, I/O threads (vhost), and vCPUs.

The experiment is executed using two workloads: Netperf [14] and Apache HTTP Server [15].

Netperf Our first experiment evaluates a throughput -oriented application. We use the

Netperf TCP stream for this purpose, which measures network performance by maximizing

the amount of data sent over a single TCP connection, simulating an I/O-intensive workload.

We vary the message size between 64 and 16384 bytes. Similar results are obtained for

messages larger than 16KB.

Figure 2. Performance evaluation of elvis-X for netperf TCP stream.

With elvis-X configurations, each additional I/O core comes at the expense of the cores that

are available for running VMs. For example, elvis-4 dedicates 4 I/O cores and only 4 cores are

shared among the 12 VMs. In the graph above we can see that elvis-3 underperforms elvis-1

for messages smaller than 1024 bytes, as the latter configuration allows 7 cores for the virtual

machines while the I/O core is not saturated.

Naturally, an I/O core has a limit to the amount of traffic it can handle in a given period. For

elvis-X, we can see the throughput curves become flatter at a certain point as message size

increases. In elvis-1, the I/O core is saturated with the smallest message size, while for elvis-2

both I/O cores reached their maximum capacity with a message size of 512 bytes.

Project No. 645402

MIKELANGELO Deliverable D6.1

Public deliverable

Ê Copyright Beneficiaries of the MIKELANGELO Project Page 13 of 94

Figure 3. Performance evaluation of io-manager for netperf TCP stream.

The figure above presents the baseline result alongside the best of elvis-X configurations,

depicted as òoptimumó. Additionally, we present our automatic I/O manager (denoted by io -

manager) which switches between elvis-X configurations based on the current state of the

system.

Apache HTTP Server To evaluate the performance on a real application, we use the Apache

HTTP Server. We drive it using the ApacheBench [16] (also called òabó) which is distributed

with Apache. It assesses the number of concurrent requests per second that the web server is

capable of handling. We use 16 concurrent requests per VM for different file sizes, ranging

from 64 bytes to 1 MB. The results are shown in the following figure.

Project No. 645402

MIKELANGELO Deliverable D6.1

Public deliverable

Ê Copyright Beneficiaries of the MIKELANGELO Project Page 14 of 94

Figure 4. Performance evaluation of elvis-X for Apache HTTP server.

In baseline, KVM allocates one I/O thread per virtual device and one thread per VCPU. Thus,

24 threads compete for the available CPU cores. This contention increases the latency and is

most acute when using small files as there are more requests per second.

For elvis-X configurations, instead of 12 I/O threads, only X threads are allocated and run on

separate cores. This reduces the contention and improves the latency. From the above graph

it is clear that elvis-1 outperforms the baseline for smaller requests, as latency is more

dominant when requesting small files. However, all configurations converge as we increase

the request size as now it becomes more stream oriented, thus hiding the latency with

concurrent requests.

Project No. 645402

MIKELANGELO Deliverable D6.1

Public deliverable

Ê Copyright Beneficiaries of the MIKELANGELO Project Page 15 of 94

Figure 5. Performance evaluation of io -manager for Apache HTTP server.

Similar to netperf, we present the baseline result for Apache compared to the io-manager,

bounded by the optimum (Figure 5). This again shows the need for dynamic monitoring and

management of cores reserved for I/O operations based on the current workload.

2.2.3 Implementation Evaluation

The implementation is available from the MIKELANGELO git repository [17], and the latest

code will be published as part of the M18 deliverable. The kernel portion does not have a unit

test per se, since the normal procedure for the Linux kernel is to test once packages are

integrated, and not test them standalone. We test the code through a series of benchmarks,

which exercises various code paths for different packet types (virtio-net and virtio -scsi

devices). The user space portion is a set of scripts that monitor the resource utilization and

configure the cores through sysfs and will also be made available as part of the M18 source

code release. We can show that these scripts are working as expected by comparing the

throughput of the system at a given moment to what can be attained with a static ELVIS

configuration with the sam e workload.

2.3 Virtual RDMA

2.3.1 Architectural Evaluation

Virtual RDMA prototype I is targeted at supporting a socket API for guest applications and

uses the DPDK RDMA Poll Mode Driver (PMD) [18] directly on the host, which is integrated

with Open vSwitch [19]. It has the simplest implementation of the three Virtual RDMA

prototypes (details in Deliverable D2.13, The first sKVM hypervisor architecture [5]), as most

Project No. 645402

MIKELANGELO Deliverable D6.1

Public deliverable

Ê Copyright Beneficiaries of the MIKELANGELO Project Page 16 of 94

of the modules in this case are offered as open source projects that can be directly used and

integrated.

Open vSwitch uses DPDK to create a central bridge, which then connects the physical port on

the host to a virtual port for the guest. No modification for the guest is necessary, and the

user application will be able to use the virtio -net device to communicate to the virtual port

on the host. Open vSwitch runs a daemon in the background to poll the virtual port and

convert communications into the format that can be processed by the physical NIC driver. In

the case of prototype I, the communication start s from the guest socket interface, and then it

is converted to the RDMA format by the DPDK Poll Mode Driver. Finally, the converted

communication is processed by the physical NIC driver.

The advantages of prototype I are: the guest OS and the guest application can be directly

used without modification; communication through the RDMA channel is fast with lower

latencies; implementation and integration are straightforward; with the setup of hugepage,

shared memory communication is enabled by default for inter -VM communication on the

same host; communication performance is better than the traditional virtio -net interface.

The disadvantages of prototype I are: at least one extra CPU core has to be occupied by the

Open vSwitch daemon (DPDK Poll Mode Driver); the user may not be able to tune the

communication easily, as the actual communication is handled by the DPDK Poll Mode

Driver, which provides only very basic tuning options; Configuration of the environment for

different systems may differ, this involves additional effort for integration; any

misconfiguration or wrong deployment in each layer of the architecture by the system

administrator may cause the entire environment to collapse.

For further implementation, we will work mainly on prototype II. Based on th e results of

prototype II, we will be able to compare and evaluate these two prototypes.

2.3.2 Performance Evaluation

Performance has been reviewed using OpenFOAM on the USTUTT testbed and an internal

testbed. The infrastructure details of the USTUTT testbed has been described in Deliverable

D2.19, The first MIKELANGELO architecture [5]. The host CPU is a IntelÉ XeonÉ Processor

CPU X5560 running at 2.80GHz. It has 8 CPU cores on two NUMA nodes. Because this

particular CPU does not support 1GB hugepage, required by Open vSwitch and the guest OS,

a series of contiguous 2MB (maximum allowed size) pages are used as an alternative solution.

Figure 6 shows the OpenFOAM test case with particular duration of around 15 minutes on

the USTUTT testbed using 2, 4 and 8 parallel processes on two VMs. The VMs are on two

different hosts connected with Ethernet and InfiniBand [20] ConnectX-3 cards. Each VM is

Project No. 645402

MIKELANGELO Deliverable D6.1

Public deliverable

Ê Copyright Beneficiaries of the MIKELANGELO Project Page 17 of 94

pinned to 4 physical CPU cores. The performance results show that on Ubuntu guests, using

virtual RDMA, prototype I is about %3 to 4% faster than the normal bridge interface. For OSv

guests, all VMs are configured to use memory on the same NUMA core as they are pinned to,

in order to avoid performance impacts due to the cross NUMA node constraints of OSv as

described in Deliverable D2.20 The Intermediate MIKELANGELO Architecture [5]. But for

virtual RDMA prototype I, an additional Open vSwitch daemon is required to be correctly

assigned on a single CPU core that has fast local memory access with the NIC for better

performance. Under this circumstance, it is not possible to avoid accessing memory across

the NUMA nodes. If we put both Open vSwitch daemon and VM on the same NUMA core,

then the entire NUMA node will be overburdened and the performance cannot be improved

in such a case. With the same configuration as Ubuntu guest, tests on OSv have to always

access the memory on both NUMA cores (Open vSwitch on NUMA node 0, and OSv on node

1). This remains a further focus to be evaluated and resolved in OSv, i.e. to break the limit of

using memory from different NUMA core as efficiently as on Ubuntu.

Figure 6. OpenFOAM 15 minute test with 2, 4 and 8 processes on Ubuntu and OSv.

In Figure 7, we show the results of the OpenFOAM test case with particular duration of

around one hour on the USTUTT testbed, where using virtual RDMA prototype I has a 3% to

7% improvement of the overall execution time. As OpenFOAM is not an application that

generates heavy communication between the workers, the performance results may not show

the real improvements that it benefits from virtual RDMA. More benc hmarking results were

presented in Deliverable D4.1 The First Report on I/O Aspects [5], where it shows about 25%

improvement.

Project No. 645402

MIKELANGELO Deliverable D6.1

Public deliverable

Ê Copyright Beneficiaries of the MIKELANGELO Project Page 18 of 94

Figure 7. OpenFOAM 1 hour test with 2, 4 and 8 processes on Ubuntu and OSv.

Similar tests with OpenFOAM have been done on a local testbed at HUAWEI. The hosts are

HP ProDesk 600 each with a 4-core IntelÉ CoreË i7-4790 Processor, and 16GB RAM memory

with the host OS being Ubuntu 14.04 LTS server edition.

The local testbed system consists of two servers, each running 2 virtual machines. These two

virtual machines are able to communicate through Ethernet or InfiniBand network

interconnects between the hosts, or through shared memory inside the host. CPU core 2 and

3 are configured in Grub parameters to be isolated when the system boots, in order to make

sure that only assigned VM processes will be able to run on the isolated cores. Eight 1GB

hugepages are created and mounted for running the vhost -user configuration within Open

vSwitch and DPDK Poll Mode Driver.

Figures Figure 8 and Figure 9 show the test results with two and four processes for

OpenFOAM with particular durations around 15 minutes and one hour respectively. The

performance of these tests show that using virtual RDMA prototype I will improve the

performance by 7% to 10% compared to using virtio -net.

Project No. 645402

MIKELANGELO Deliverable D6.1

Public deliverable

Ê Copyright Beneficiaries of the MIKELANGELO Project Page 19 of 94

Figure 8. OpenFOAM 15 minute test with 2 and 4 processes on Ubuntu (local testbed).

Figure 9. OpenFOAM 1 hour test with 2 and 4 processes on Ubuntu (local testbed).

2.3.3 Implementation Evaluation

Virtual RDMA prototype I has been implemented and shell scripts for configuring it on the

host have been integrated with Torque on the HPC infrastructure at USTUTT. When the user

submits or terminates a job, the corresponding scripts will be automatically started and the

environment for the job will be created or destroyed. This integration has been pushed to the

Project No. 645402

MIKELANGELO Deliverable D6.1

Public deliverable

Ê Copyright Beneficiaries of the MIKELANGELO Project Page 20 of 94

MIKELANGELO project repository and will be published in the projectõs M18 release. The

fundamental code that is prepared for further prototype II implementation has been pushed

to the MIKELANGELO project repository.

Performance of the first prototype has been tested and evaluated with several benchmarks

and use cases. Comparing with the traditional virtio-net, using prototype I will gain

noticeable performance improvement s in most of the tests.

The implementation of virtual RDMA prototype II has started. The implementation is based

on Hyv [21], which was based on Linux kernel 3.13. The gap between kernel 3.13 and the

targeting kernel 3.18 is huge, which makes it difficult and time consuming to get the initial

version ready. Most of this work has been accomplished, and the rest of the implementation

work will be finished shortly.

2.4 Unikernel Guest Operating Systems

2.4.1 Architectural Evaluation

The Guest Operating System for the MIKELANGELO architecture is unikernel-based [22]: the

application runs in a virtual machine on top of a small and efficient Linux (POSIX) compliant

kernel (OSv). This contrasts with recent market trends where containers are receiving a lot of

attention. In containers, the host kernel resources are segmented in order to isolate each

hosted application. The obvious drawback of containers compared to virtual machines and

unikernels is the huge attack surface of the host kernel: a unikernel being run in a well

audited virtual machine offers less holes for an attacker to leverage because the virtual

machine hardware is small and scrutinized.

OSv is the C++11 unikernel used in the MIKELANGELO project. The main OSv differentiator

compared to alternatives (such as ClickOS, Clive, Drawbridge, JaLVM, IncludeOS, LING,

Mirage, Runtime.js and Rump Run [22]) is that OSv is intended to be a comprehensive

alternative to the Linux kernel, supporting all existing Linux applications and multiple

hypervisors. OSv acts as an almost drop -in GNU/Linux replacement optimized for virtual

machine hardware. The unikernel closest to OSv is Rump Run due to its NetBSD-based

sources that make it akin to a real operating system and not a simple library. IncludeOS is

another example of a unikernel that claims to run existing Linux software, but it actually only

implements a very limited subset of Linux, reducing its compatibility significantly.

The main benefits of a unikernel are revealed in a context where the dev-op team

industrialize and streamline their virtual machine image construction. A combined unikernel

and application resulting in a virtual machine artifact must be considered as a cloud-like

process once executed in a virtual machine. The initial industrialization steps of using a

Project No. 645402

MIKELANGELO Deliverable D6.1

Public deliverable

Ê Copyright Beneficiaries of the MIKELANGELO Project Page 21 of 94

unikernel are steeper than using a container because it forces the dev-op team to rethink

their virtual machine construction processes but in the end the result is much cleaner than

the traditional approach of relying on an unwieldy, difficult to maintain, c ollection of shell

scripts.

Users of a unikernel like OSv cannot make use of multiple processes in a single virtual machine

instance. One of the consequences is that shell scripts that inherently use process forking are

unavailable in OSv. A high level REST API is thus provided by OSv allowing management of

the entire lifecycle of the OSv instance and the application. One of the observations has been

that this slightly limits the adoption of OSv: existing tools typically need to be reconsidered

and rewired to the alternative interface and, consequently, an investment must be made into

adapting existing processes.

Some challenges were encountered when employing OSv in MIKELANGELO, but these have

all been addressed by the OSv team:

NFS [23] is currently used in a HPC context to get data in and out of the compute node. To

support this MIKELANGELO has ported a basic NFS client to the OSv kernel. It builds as an

additional option and is released under an LGPL license. Two additional OSv commands

mount -nfs.so and unmount.so were added so the user can easilly mount their share. This NFS

client implements NFS V3. The OSv architecture allowed the porting of NFS to be performed

quickly. A description of the porting process has been documented online [24].

To simulate UNIX processes in Open MPI [25], an additional mechanism to isolate the

memory space of a thread has been added to OSv. The isolation characteristics of these

thread namespaces are somewhat weaker than UNIX processes, but they allow users to

successfully run Open MPI payloads like OpenFOAM.

Some HPC payloads (such as provided by USTUTT) need to be linked with a configuration file

generated by the rest of the infrastructure, without using NFS. With a Linux guest the classical

method is to create an ISO9660 image [26] and pass it to the guest. Since only one

configuration file is needed, tools have been created in MIKELANGELO to embed this

configuration file in a raw image thus saving MIKELANGELO the overhead of porting a

complete CDROM file system to OSv. The first tool is used to bake the configuration file in a

raw image on the host and a second tool allows the extraction of the configuration file in the

OSv guest.

Project No. 645402

MIKELANGELO Deliverable D6.1

Public deliverable

Ê Copyright Beneficiaries of the MIKELANGELO Project Page 22 of 94

2.4.2 Performance Evaluation

As OSv cannot optimize physical CPU or memory speed, our work is focusing on the

optimization of virtual IO in OSv. This includes both disk and network virtual IO. Two specific

benchmarks are presented in the following subsections.

2.4.2.1 Redis

Redis [27] is a simple service that fills a valuable niche between a key-value data store and a

full-scale NoSQL database such as Cassandra [28]. Redis supports not just key-value items,

but also more advanced data structures such as sets and queues.

The following benchmark compares Redis on OSv and Ubuntu 14.04 AMI. To do that, we

have just launched a new AMI on Amazon EC2 [29] with Ubuntu 14.04. We use the

configuration file shipped with Redis by default on one CPU core, with one change: we

disable disk activity.

Figure 10. Redis performance evaluation.

On Ubuntu, Redis was run with:

Project No. 645402

MIKELANGELO Deliverable D6.1

Public deliverable

Ê Copyright Beneficiaries of the MIKELANGELO Project Page 23 of 94

 numactl -- physcpubind=1 redis - server ~/redis.conf

Using numactl considerably reduces the standard deviation as a result of Linux scheduling.

The redis-benchmark command was run from another machine of the same type, running in

the same zone and placement group.

We see that the advantage of OSv is clear on non-range queries because the redesigned

TCP/IP stack of OSv allows to do smaller queries more efficiently. Range queries donõt see any

improvement because they generate bigger results.

2.4.2.2 memcached

Memcached [30] is a popular in-memory key-value store. It is used by many high-profile Web

sites to cache results of database queries and prepared page sections, to significantly boost

site performance.

An unmodified memcached running on OSv was able to handle about 20% more requests

per second than the same memcached version on Linux. A modified memcached, designed to

use OSv-specific network APIs, had nearly four times the throughput. These numbers are for

one core and UDP request.

Figure 11. memchached performance evaluation.

2.4.3 Implementation Evaluation

Quality assurance at the Linux compatibility layer is ensured with an extensive set of

functional tests OSv provides. All changes to the API start with a test validating the behaviour

from the perspective of Linux or the POSIX standard.

Project No. 645402

MIKELANGELO Deliverable D6.1

Public deliverable

Ê Copyright Beneficiaries of the MIKELANGELO Project Page 24 of 94

OSv possesses its own functional tests in the /tests directory [31] which ensure its API is as

compatible as possible with a Linux system. These scripts can be quickly invoked by running

the command òmake checkó.

2.5 Application Package Management

2.5.1 Architecture Evaluation

Building on top of the evaluation of the OSv unikernel from the previous section, this section

focuses on a different aspect of any new operating system or platform: management of

application packages. Even though it is clear from the previous evaluation that OSv provides

a reasonably high level of compatibility with general purpose operating systems, such as

Linux, the way package management is handled differs significantly.

Deliverable D2.16 The First OSv Guest Operating System MIKELANGELO Architecture [5]

already described the essential value of an appropriate package management system

supporting user adoption. In this deliverable we have focused on two approaches that the

OSv community has already built for the purpose of building OSv-compliant virtual machine

images, namely the developer scripts [32] and a tool called Capstan [33].

Developer scripts are provided by the OSv kernel source tree. They include a number of

BASH and Python scripts that help OSv developers to build, test and validate their changes to

the kernel using real applications. The main script is called scripts/build, which in turn consults

the OSv kernel Makefile to build the kernel and the requested module s, as well as other

scripts that will ensure that results of the compilation process (libraries, applications,

supporting files, etc) are uploaded into the target QEMU [13] virtual machine image.

Existing applications are maintained in a central Github repository (osv-apps [34]) which is

also linked in the main OSv kernel repository as a submodule. An important design decision

of this approach was to maintain applications as some sort of recipes: instead of having

prepackaged binary application packages, each application provides a set of scripts that

builds the target application in a suitable way. The benefit of this is that it empowers end

users to alter applications manually or update them to the newer versions. However, this also

has several drawbacks, some of which are described next:

Ɓ The end user is required to have a full development environment to use applications.

Ɓ The user must build the entire application which, as it will be seen in the next sections,

might take longer than expected.

Ɓ It is up to the application maintainer to ensure cross-compilation in case system-wide

libraries are required for building the target application (for example, if a system

Project No. 645402

MIKELANGELO Deliverable D6.1

Public deliverable

Ê Copyright Beneficiaries of the MIKELANGELO Project Page 25 of 94

package is required, apt-get would have to be used for Ubuntu/Debian and yum for

Fedora/CentOS).

Ɓ Very limited possibilities for validation/verification (no validation of packages, no

dependency management, resolution, etc.).

Ɓ Lack of formalized structure and processes to be followed in building a complete OSv

virtual machine image.

Capstan is a specialised tool for building virtual machine images for applications running on

top of the OSv kernel. Capstan does not require recompilation of the OSv kernel when the

application is being built for an OSv image. Instead, it is using the notion of a base image

containing the kernel and one or more additional packages (modules) built into the image.

Capstan further formalizes the structure of the application description. However, its reliance

on the base images is also its biggest drawback as it only augments the base image by

uploading additional files. Base images are of fixed size (10 GB) which is sufficient in most

cases but does not provide the flexibility often required in the cloud. Resizing the base image

would require the use of the OSv developer scripts discussed previously.

Based on these findings, the requirements collected from other partners and the analysis of

frequently used package management systems in other systems, Deliverable D2.16 The First

OSv Guest Operating System MIKELANGELO Architecture [5] proposed the following

architecture (all components are described in detail in Deliverable D2.16).

Figure 12. Architecture of MIKELANGELOõs application package management.

The focus of the first released version of the application management tool was on the Image

Composer and the Package Builder components. The updated tool also supports a

preliminary integration with the OpenStack (Image and Compute) services [35]. The following

subsections provide the evaluation of the MIKELANGELO Package Manager tool which

extends the Capstan tool.

Project No. 645402

MIKELANGELO Deliverable D6.1

Public deliverable

Ê Copyright Beneficiaries of the MIKELANGELO Project Page 26 of 94

2.5.2 Performance Evaluation

Deliverable D4.7 First version of the application packages [5] introduced the initial

performance evaluation comparing developer scripts, the original version of Capstan and the

MIKELANGELO Package Manager (MPM) tool which is summarised in the following table.

Table 1. MIKELANGELO Package Management performance evaluation.

 Developer scripts Capstan MPM (ratio to dev

scripts, ratio to

Capstan)

HTTP Server 3.15 s 3.44 s 6.93 s (2.2, 2.0)

CLI 3.30 s 3.59 6.84 s (2.1, 1.9)

OpenFOAM 30.93 s 7.97 s 8.44 s (0.3, 1,1)

The table shows average times for building target virtual machine images for three different

applications. The MPM column also shows relative comparison to developer scripts as ratio

between time-spent in MPM vs. developer scripts or Capstan, respectively.

Developer scripts invoke the applicationõs Makefile on every virtual machine image build.

Simple applications like built-in HTTP Server and CLI (Command Line Interface) can be built

efficiently because their Makefiles are simple. However, a more complex application

(OpenFOAM) takes significantly more time just to check whether there are any changes in the

OpenFOAM application code (the time required by developer scripts for OpenFOAM in the

table above do not rebuild OpenFOAM, just check for changes and recompose the VM

image). On the other hand Capstan and MPM only need to upload the resulting application

onto the target VM, without checking the OpenFOAM source tree for changes. This makes

both alternatives significantly faster.

When comparing Capstan and MPM one should be aware of the following two differences.

First, HTTP Server and CLI are applications (modules) that are included in pre-built images.

This means that creating an image containing HTTP Server or CLI reduces to making a copy

of the base image. On the other hand, slight performance degradation in the case of

OpenFOAM is due to the fact that MPM builds images out of packages. This means that even

the base OSv has to be uploaded onto the target image resulting in approximately 10%

performance loss. Even this degradation is certainly worth the flexibility offered by MPM.

However, for the purposes of thorough evaluati on we conducted additional tests offering

Project No. 645402

MIKELANGELO Deliverable D6.1

Public deliverable

Ê Copyright Beneficiaries of the MIKELANGELO Project Page 27 of 94

more insights into different approaches to application packaging. These are presented in the

following subsections.

2.5.2.1 First Time OSv and Application Users

As we have already described, developer scripts can only be used in conjunction with the

entire OSv kernel source tree. Consequently, prior to building an application image, the OSv

kernel must be compiled. Besides the time required to setup the development environment

this results in additional over 10 minutes required to build the first application image. After

the kernel and the application are fully compiled, the times from the aforementioned table

are applicable.

This difference is even more significant for large applications with complex compilation logic,

such as OpenFOAM. Because OpenFOAM is used in the Aerodynamics use case (as detailed

in Deliverable D2.10 The First Aerodynamic Map Use Case Implementation Strategy [5]) the

MIKELANGELO consortium provides the OpenFOAM application compatible with other OSv

applications from the OSv-apps repository [34]. However, using developer scripts, this still

takes several hours to compile before the application image can actually be used, not

including the contextualisation of the image. Because Capstan uses the same build

command, it would suffer from the same problem. Contrary to this MPM is not affected in

any way because a pre-built package is available. The user is immediately allowed to

download and compose their OpenFOAM simulation into an executable image.

2.5.2.2 Applicat ion Package Authors

The following comparison table focuses on evaluating the three tools from the perspective of

application authors interested in sharing their applications as OSv-compliant application

images or packages. The evaluation is based on the typical workflow.

Table 2. Application Package Management tool comparison.

Developer scripts Capstan MPM

Preparation of the application content

Developer is supposed to

prepare a script that ensures

the application is

downloaded, patched and

compiled automatically.

Besides the build script

which is the same as in the

case of developer scripts, a

dedicated Capstan image

specification is also required

(Capstanfile).

Application authors are

encouraged to create a

verbatim structure of the

package. This can be done in

an way.

The tool supports the author

with the creation of an

Project No. 645402

MIKELANGELO Deliverable D6.1

Public deliverable

Ê Copyright Beneficiaries of the MIKELANGELO Project Page 28 of 94

Developer scripts Capstan MPM

application manifest file

which describes the

application and its

dependencies.

Dependency management

A Python module is available

for OSv supporting the

specification of dependent

modules. These must be

specified in a special Python

script (module.py)

Capstan only supports the

notion of a base image. This

may contain arbitrary

modules, however there is

no way of composing several

modules into a single

application image (apart

from iteratively building

images until all modules are

uploaded).

Required packages

(modules) are specified in

the application manifest file.

Application packages are

collected by the tool and

uploaded onto the target

application image.

Image building workflow

The user needs to invoke the

main OSv build script and

specify the list of required

modules. This script will in

turn invoke scripts from

required modules and

eventually include all of

them in the target image.

Capstanfile is consulted for

information about the build

process and the file structure

of the application.

The application manifest is

used for basic metadata and

other required packages.

Content is retrieved directly

from the applicationõs root

directory.

Performance

The main build script is

highly optimised. However,

applicationsõ build scripts

may not be efficient as they

are provided by third -party

application providers. Since

the application user is

required to recompile the

application, this could affect

their perfo rmance.

Same as in the case of build

scripts because Capstanfile

just references the build

script.

The application author

prepares the package in a

form suitable for execution

on top of OSv, consequently

the end user never needs to

rebuild the package

manually.

Additionally, the tool

supports efficient

incremental updates to

Project No. 645402

MIKELANGELO Deliverable D6.1

Public deliverable

Ê Copyright Beneficiaries of the MIKELANGELO Project Page 29 of 94

Developer scripts Capstan MPM

target images by uploading

only the content that has

been changed.

Application execution

The image must be built

before it is used.

A script for running OSv-

based images is included in

the OSv source tree. Being

developer-oriented, it

provides the most

configuration options.

The image must be built

before it can be used.

Capstan only supports a

subset of configuration

options of the developer

script.

Application may be launched

immediately (the tool will

ensure the image is updated

with the latest content).

The same set of

configuration options as in

the case of Capstan is

available to date, apart from

the ability to run

applications on OpenStack

directly.

Package and applicati on repository

Applications and packages

are available in a Github

repository [34]. This

repository is already

referenced as a submodule

in the OSv kernel source.

Additional local repositories

may be added and

configured in OSv

(config.json file).

At the time of this report, 73

different applications are

available.

Application images are

available on a repository

hosted on Amazon S3.

11 base images are available.

MIKELANGELO currently

does not provide a central

repository from where

required packages are

downloaded on demand.

Packages, provided by the

MIKELANGELO project, can

be downloaded and

integrated into the local

repository manually, though.

2.5.3 Implementation Evaluation

Application packaging is addressing two audiences that are important for the uptak e of the

OSv unikernel and the MIKELANGELO technology stack as a whole. First, application

providers and integrators interested in providing self -contained application packages, and

Project No. 645402

MIKELANGELO Deliverable D6.1

Public deliverable

Ê Copyright Beneficiaries of the MIKELANGELO Project Page 30 of 94

second, end-users interested in running their workloads on top of a lightw eight Linux-

compatible operating system for the cloud.

The following subsections will provide an objective evaluation of different aspects of the

current version of the MIKELANGELO Package Management (MPM).

2.5.3.1 Package Metadata

MPM was built on top of the prev iously developed Capstan tool. Capstan distinguished the

image repository from the running instances allowing execution of several instances from the

same base image. MPM added another layer on top of this by introducing the notion of an

application package. An application package is a compressed archive with additional

metadata information used when composing a set of packages into application virtual

machine images.

Package metadata is currently used only partially. This information is displayed to the user in

the package listing (òcapstan package listó command) allowing them to analyse the installed

packages. The name of the package is used as a reference for specifying the required

packages for the target application image. The requirements are always considered

recursively allowing an application image to require packages that consequently rely on other

packages.

One of the most important pieces of the metadata information that is currently being

ignored is the version information. Even though the version is stored in the package

repository and displayed to the end user when querying package information, it is not used

by the dependency manager in any way. Consequently, it is currently not possible to have

two or more versions of the same application package. This has not been an issue at this

stage of the project as we are building applications simultaneously and are always interested

in using only the latest (and most stable) version of the application package. However, in

order to allow users to choose from different versions of the same package, MPM should be

extended to use the version information as much as possible. This will, for example, allow

users to choose from OpenFOAM 2.4.0 and 3.0.0 or even one of the legacy versions that they

have been using in the past.

MPM metadata should also be extended with information on the capabilities (functionalities)

a package provides to an end user. This may be provided in the form of package

documentation (for example usage explanation and possible commands) or by providing

specific command lines the user is able to reuse. We are currently estimating that a

combination of both of these approaches should be employed for best flexibility.

Project No. 645402

MIKELANGELO Deliverable D6.1

Public deliverable

Ê Copyright Beneficiaries of the MIKELANGELO Project Page 31 of 94

2.5.3.2 Application Packages

Along with the updated tool for managing application p ackages and virtual machine images,

the MIKELANGELO consortium maintains several pre-built application packages. Current

packages are mainly required by internal use cases.

The OSv kernel has been compiled using the developer scripts. Two core artefacts have been

used and integrated into MPM:

Ɓ Kernel loader: the OSv loader is responsible for loading the kernel when the virtual

machine is instantiated

Ɓ Bootstrap package: a set of libraries and tools that are mandatory for any kind of

application running on t op of OSv. These include a tool for formatting the target

partition (mkfs) and the tool to upload application content onto the OSv image.

Libraries include the ZFS filesystem support and some of the libraries used by the

kernel itself.

Both of these are available in the MPM package repository and are included into the target

application image automatically without the user having to specify any explicit reference.

Similar to these two components, MPM also provides several of the widely used OSv core

modules (HTTP REST server, Command Line Interface, Java and cloud-init to name a few).

These modules can easily be incorporated into any application image simply by specifying

them as a required package. The benefit of providing these modules as MPM packages is

that end users are not required to build them from source nor are they limited to the pre -

built virtual machine images containing a subset of these modules.

OpenFOAM [4] provides a set libraries (framework) and applications (solvers) supporting

intensive computational fluid dynamics. MPM currently provides two packages:

Ɓ OpenFOAM Core: a set of core libraries that are used by every OpenFOAM

application.

Ɓ OpenFOAM simpleFoam application: a specific application that has been used by the

Aerodynamics use case. It depends on the OpenFOAM Core package and only

provides libraries and files not included in the core package.

The reason for separating OpenFOAM into two packages is because the use case will employ

other applications in the future, each performing additio nal analyses. Furthermore, having the

core separated from the actual application logic allows the end user to integrate their own

application (solver) and compose an application image on top of the core.

Finally, the MIKELANGELO project also integrated Hadoopõs distributed filesystem (HDFS [6])

into OSv. A special MPM package is available with the basic mandatory configuration options

as well as the configuration of the Java VM. Users can use this base package to create HDFS

Project No. 645402

MIKELANGELO Deliverable D6.1

Public deliverable

Ê Copyright Beneficiaries of the MIKELANGELO Project Page 32 of 94

deployments with specific config uration options and additional modules. Preliminary

experiments have been made with Apache Storm [7], however a package has not been

provided yet due to some limitation of running Storm in OSv (presented in later sections).

Building all of the above MPM packages proved a trivial task once Capstan was updated with

the additional functionalities. The common approach was to build the target application from

source, extract relevant binaries and build the application image for testing. The most time

consuming task of this approach is the actual validation procedure guaranteeing that the

application and all of its required libraries are properly integrated into the package.

After the application image was thoroughly tested, the package was created and stored into

MPMõs central repository from where it can be used to compose other, more specialised

application images.

2.5.3.3 Application Image Composition Caveats

The first release of MIKELANGELO extensions to the Capstan tool already promises significant

simplification ov er existing approaches to building OSv-compliant virtual machine instances.

However, in this section we focus on the current limitations as seen by the end user. These

limitation will drive the provision of new requirements for the packaging tool.

Packages vs. Applications. Currently the tool does not distinguish between packages and

applications - everything is a package and has to have a package manifest. However,

frequently we discovered in our experiments that it is cumbersome to have to initialise the

application package just to compose the application image. It would be preferable if it were

possible to compose application images directly from the packages and the underlying

directory structure.

Default command management. Base application packages should be allowed to specify

one or more default command lines that would allow the user of the package to run them

without knowing the actual command line. For example, the OpenFOAM simpleFoam

package could specify its default command as:

$ -- env =WM_PROJECT_DIR=/openfoam / usr / bin / simpleFoam . so - case / case

This tells OSv to set the environment variable and then launch the simpleFoam application

with the input case at the specified (/case) location. By setting this command in the base

package and providing the user with the ability to check it prior to using it, this package will

allow end users to prepare the application package in a suitable way.

Furthermore, such an approach would allow the users to understand options that are

available to them. For example, Hadoop HDFS may be used as a namenode (main node) or a

Project No. 645402

MIKELANGELO Deliverable D6.1

Public deliverable

Ê Copyright Beneficiaries of the MIKELANGELO Project Page 33 of 94

datanode (node storing the data). If both of them would be provided as predefined

commands, the user would be able to choose between them according to their needs.

This information could furthermore be propagated into the HTTP REST management API

allowing users to launch the commands dynamically through the API. Instead of starting apps

immediately upon OSv boot is finished, users would be allowed to launch one or more

instances and then communicate to them the roles they should take in a cluster.

Java extensibility. Hadoop HDFS is an example of a complex Java [36] application that

contains all required libraries and configuration files. It also sets the default command line to

be used when running HDFS application However, prior to using HDFS, users are required to

configure it (for example, to specify the location of the main node - namenode). When HDFS

is integrated into a target application, the complex Java command line is not populated into

the target VM. The tool should support such cases by using base package configuration if it is

not provided by the application itself.

Runtime environments. Besides Java we are also investigating other popular environments

that are going to bridge the gap between the way developers, system administrators or

devops are deploying certain apps. Node.js [37], Python [38] and Go [39] are being

investigated for now.

2.5.4 Additional Observations

In April 2016 a new project by EMC [40] called UniK [41] has emerged. The project is

targeting compilation of custom applications for unikernel platforms. OSv [2] and rump

kernel [42] are currently supported with MirageOS [43] support under way. It supports

deployment of unikernel -based applications onto VirtualBox, Amazon and vSphere

(OpenStack being one of the next enhancements). The project seems active as changes are

added on a daily basis.

OSv support is somewhat limited for the time being as only simple Java applications can be

used. Based on current activities and documentation rump kernel seems to be the preferred

unikernel. The project integrates the original version of the Capstan tool for building

application images resulting in the same limitations as described in previous subsections.

The UniK project does not directly pose a direct competitor to the MIKELANGELO Package

Management being developed in the MIKELANGELO project. The project could be seen as a

potential counterpart to our contributions focusing on the application runtime lifecycle as

opposed to the packaging lifecycle of the MIKELANGELO Package Management.

Project No. 645402

MIKELANGELO Deliverable D6.1

Public deliverable

Ê Copyright Beneficiaries of the MIKELANGELO Project Page 34 of 94

Similar to UniK, but somewhat less generic, is a set of open source tools developed by Defer

Panic [44]. Since these are primarily focused on Go application support and the rump kernel,

they are only mentioned for completeness.

2.6 Monitoring

2.6.1 Architecture Evaluation

Cloud and HPC providers have a wide range of tools to choose from to meet their monitoring

and instrumentation needs. The most popular options at the moment include collectd [45],

Ganglia [46], Telegraf [47], and OpenStackõs Ceilometer [48]. Each of these systems have a

different architecture and capabilities, and each is written to address specific goals. All of

them have the ability to integrate with Cloud and HPC deployments.

Deliverable 5.1 First Report on the Integration of sKVM and OSv with Cloud Computing [5]

describes the requirements that drove the telemetry solution selected and developed for

MIKELANGELO. It was decided to enhance a new telemetry framework written from the

ground up for scalable, flexible, full-stack data-centre instrumentation, snap [8], rather than

work with any of the existing platforms. The most important MIKELANGELO requirements

had an important impact on the architecture of the system and its design.

Regarding the collection of hypervisor metrics , some of the outlined solutions like collectd

and Ganglia allow metrics collection from the kvm hypervisor [12], mostly through the libvirt

package [49]. But none of them has the possibility of tagging the data with the names of the

virtual machines for OpenStack or the job IDs for HPC deployments. This functionality has

been implemented in MIKELANGELOõs snap: version 2 of the libvirt collector and the snap tag

processor allows the virtual machine and HPC task identities to be captured. Indeed changes

to the virtual machine such as the addition of a network card or memory can also be tagged,

as can the migration of a machine from one host to another. This type of flexibility is not

readily achievable with the alternative telemetry system implementations.

Regarding guest OS metrics , none of the alternatives considered allow the collection of

metrics from the OSv operating system. Snap now allows users to monitor over 260 OSv

metrics from the CPU, memory, and IO subsystems amongst others, with web server traces

also available, Specific metrics can be turned on or off as required.

Regarding hosted application and service metrics, snap at this moment has 51 plugins

released and at least 8 in development: the list of plugins that allows collection of data from

various software stacks continues to grow. The extensibility of the architecture to capture

data from arbitrary hosted applications and services has been validated by MIKELANGELO:

custom plugins were successfully developed (and open-sourced) by the consortium to collect

Project No. 645402

MIKELANGELO Deliverable D6.1

Public deliverable

Ê Copyright Beneficiaries of the MIKELANGELO Project Page 35 of 94

data from libvirt, OpenFOAM and OSv. Additional hosted application and service metrics will

be instrumented as the use-cases mature and more specific requirements materialise.

Regarding more general requirements, the snap framework includes many architectural

features not available in any of the other platforms. For example:

Ɓ Distributed telemetry gathering workflows are supported by allowing remote

hosts to be specified to execute parts of a telemetry task workflow. A gRPC [50] server

runs on each host so that actions can be received and handled by the scheduler. On

task creation the workflow is walked and the appropriate remote host is selected or

created for each step in the workflow. This allows the user to lower consumption of

the local CPU and other resources by offloading any intense analytical steps they may

require to remote systems. Distributing a telemetry workflow increases network traffic,

so users should only distribute workflows when there is sufficient value in reducing

the local overhead.

Ɓ Dynamic metrics reconfiguration is supported by snap without requiring an

application restart. With other telemetry platforms the reconfiguration of metrics

collection typically requires the user to stop the application, reconf igure, and then

restart. This can demand frequent interventions by the system administrators. In the

snap framework the collection of each metric is defined in a task, and tasks can be

started, stopped and reconfigured without having to restart the daemon processes.

Ɓ Tribe is the name of the clustering feature in snap designed to greatly simplify

management of large numbers of nodes. When it is enabled, snapd instances can join

one another through an agreement, thus forming a tribe. When an action is taken b y

one snapd instance that is a member of an agreement, that action will be carried out

by all other members of the agreement. When a new snap daemon joins an existing

agreement it will retrieve plugins and tasks from the members of the agreement.

Tribe can be turned on by passing ò--tribe 1ó argument to the daemon. In the near

future INTEL is planning to extend Tribe agreements to support configuration and

logging agreements.

2.6.2 Performance Evaluation

To evaluate the implementation of snap and compare it to o ther telemetry systems,

automatic deployment scripts were written to gather equivalent sets of metrics from a local

node using the following systems:

Ɓ Snap version v0.14 with the snap plugin pack [8]

Ɓ Collectd version 5.5.0 [45]

Ɓ Ganglia 3.6.0-1ubuntu2 distri buted with Ubuntu 14.04 [46]

Ɓ Telegraf 1.0.0 available [47]

Project No. 645402

MIKELANGELO Deliverable D6.1

Public deliverable

Ê Copyright Beneficiaries of the MIKELANGELO Project Page 36 of 94

The system hosting the tests had an IntelÉ XeonÉ E5320 CPU, 1.8g6 GHz, with the Virtual

Machine allocated 4GB RAM, 2 VCPUs , 40GB disk space, and running Ubuntu 14.04.

An in-house, low-overhead telemetry system known as òCimmaronó [51] was used to measure

the performance of each of the telemetry platforms. Cimmaron gathered the following data

for each test:

Ɓ cpu utilization / cpu saturation

Ɓ disk utilization / disk saturation

Ɓ used memory

Ɓ disk usage

The experiment was executed three times for each telemetry system: collecting Linux proc file

system or sys filesystem data from 10, 50 and then 100 probes. This would allow the

scalability of each telemetry gathering system to be observed. Each experimental run lasted 5

minutes, data was collected with a 1 second resolution, and all data gathered was published

into a local comma-separated-variable file.

Unfortunately the 50 and 100 probe runs could not be performed using Ganglia as it does

not allow the specification of individual metrics and only 10 metrics were available for the

procfs filesystem.

The performance data gathered is summarised in the following tables.

Table 3. Comparing telemetry frameworks collecting 10 probes.

Telemetry

Platform

Idle Runtime

CPU Util Memory CPU Util Memory Disk Util

Collectd 0.3 % 50 MB 1-4% 50 MB 0%

Telegraf 0.0 % 10 MB 0-0.25 % 30 MB 0%

Ganglia 0.1 % 14 MB 0-0.25% 14 MB 0 %

Snap 0.1 % 140 MB 2-3% 160 MB 0%

Project No. 645402

MIKELANGELO Deliverable D6.1

Public deliverable

Ê Copyright Beneficiaries of the MIKELANGELO Project Page 37 of 94

Table 4. Comparing telemetry frameworks collecting 50 probes.

Telemetry

Platform

Idle Runtime

CPU Util Memory CPU Util Memory Disk Util

Collectd 0.3 % 50 MB 3-4% 80 MB 1%

Telegraf 0.0 % 10 MB 3-4 % 38 MB 0%

Ganglia - 14 MB - - -

Snap 0.1 % 140 MB 2-3% 150 MB 0%

Table 5. Comparing telemetry frameworks collecting 100 probes.

Telemetry

Platform

Idle Runtime

CPU Util Memory CPU Util Memory Disk Util

Collectd 0.3 % 50 MB 3-5% 110 MB 2-3%

Telegraf 0.0 % 10 MB 3-30 % 120-240 MB 0%

Ganglia - 14 MB - - -

Snap 0.1 % 140 MB 2-3% 150 MB 0%

Exploring this data it can be seen that all Telemetry Platforms except snap have a noticeable

increase in demand for local memory and CPU resources as the number of probes being

gathered increased. Snapõs relatively static overhead is possible due an optimised allocation

of memory and the very efficient scheduler enabled by the Go language, compiler and

runtime [39].

To validate the implementation of snap clustering on a large -scale deployment, an ansible

script was written to deploy snap on 500 compute nodes that were configured to

continuously run a monte carlo simulation under various conditions. The snap daemon was

configured using tribe agreements to

Ɓ collect 8 metrics:

Project No. 645402

MIKELANGELO Deliverable D6.1

Public deliverable

Ê Copyright Beneficiaries of the MIKELANGELO Project Page 38 of 94

 compute utilization / saturation

 memory capacity utilization / saturation

 network card utilization / saturation

 storage utilization / saturation,

Ɓ process data using automatic anomaly detection via the Tukey method [52]

Ɓ send processed data to an InfluxDB [53] database.

Figure 13. Snap task workflow for 500-node test.

Figure 14. Snap Grafana dashboard illustrating mean CPU utilisation across 500 nodes.

Project No. 645402

MIKELANGELO Deliverable D6.1

Public deliverable

Ê Copyright Beneficiaries of the MIKELANGELO Project Page 39 of 94

Results showed that the clustering features built into the snap framework were able to

manage a 500 node monte-carlo simulation with no issues. Telemetry was successfully

captured from all nodes, processed locally, published to a scalable InfluxDB backend and

available for review via the grafana dashboard graphical user interface.

2.6.3 Implementation Evaluation

Snap was open sourced in December 2015 and the open-source community are actively

encouraged to contribute via the project facilities. Best-in-class development practices and

tools such as GitHub, Travis CI [54] and Jenkins [55] have been adopted to maximise the

quality and robustness of the code.

At the core of continuous integration of snap lies the ability to automate the tests that are

being developed in parallel with the code. Code is tested for quality, functionality, integration

and performance, Every plugin repository contains its own test files and configurations for

Travis CI - the continuous integration tool employed by snap. Every change of th e code in the

repository automatically triggers testing to be carried out on both the Linux Travis

environment and on the local Jenkins server.

Figure 15. Automated Continuous Integration tests managed by Travis CI.

Project No. 645402

MIKELANGELO Deliverable D6.1

Public deliverable

Ê Copyright Beneficiaries of the MIKELANGELO Project Page 40 of 94

Average coverage tests for snap repositories are about 85% . Some of the repositories like

libvirt contain integration tests, performed on the real libvirt package, against a fully loaded

plugin. This kind of test allows tests to be performed in an environment almost identical to

production. To have a clear view of the state of a test, appropriate badges have been

implemented and assigned to every developed plugin, allowing the developers and

integrators to quickly check the status of a test suite and static code analysis check.

Figure 16. Badges assigned to the MIKELANGELO developed OpenFOAM collector plugin.

2.6.4 Additional Observations

Being able to use the snap open source telemetry framework and integrate it with the Cloud

and HPC environment allows MIKELANGELO resources to focus on implementing the precise

functionality that the project requires, rather than attempt to construct and m aintain an

independent flexible framework, or be forced to work within the limitations of existing

telemetry systems.

Snap is suitably flexible, extensible, scalable, and performant for MIKELANGELO purposes,

and is gathering full stack data on both the projectõs Cloud and HPC environments.

Snap is new, and does not yet have a substantial open-source community, but significant

facilities and resources have been put into making this an open platform, and the first plugins

from the open -source community have already been accepted and published.

Regarding next steps, INTEL has plans to develop additional functionality as requested and

prioritised by MIKELANGELO. An Open vSwitch plugin is envisaged to allow detailed virtual

network statistics to be captured. Anomaly Detection and Utilisation/Saturation metrics will

soon be available to automatically reduce data resolution when feeds are static, and to

summarise high level metrics. A request has also been received to develop a snap controller

for the Cloud which can automatically start metric collection from Guest operating systems

like OSv or specific applications, based on information provided by the orchestration engine.

There are also opportunities to further automate the analysis of data captured by snap,

possibly leveraging the open source Trusted Analytics Platform [56]. Such a toolkit could

automate the comparison of large volumes of data captured across multiple runs of an

experiment, allowing key changes in performance and correlations to be discovered, and

optimisations to be identified.

Project No. 645402

MIKELANGELO Deliverable D6.1

Public deliverable

Ê Copyright Beneficiaries of the MIKELANGELO Project Page 41 of 94

2.7 Hosted Application Acceleration

2.7.1 Architectural Evaluation

Seastar [9] is a novel asynchronous C++14 programing framework created by the ScyllaDB

team in order to be able to write the ScyllaDB database [57]. Seastar drew inspiration from

existing concurrent frameworks including:

Ɓ Vertx: [58] (Java)

Ɓ Nodejs: [37] (Javascript)

Ɓ Twisted: [59] (Python)

Ɓ Libevent: [60] (C)

Ɓ EventMachine: [61] (Ruby)

Important points distinguishing Seastar from these include the implementation language:

Seastar is written in C++ whereas all of the other frameworks apart from Libevent are

implemented in slower languages. Seastar has a sharded design, in contrast to NodeJS and

VertX where threads are heavily used. Finally, Seastar features many low level optimizations

due to the kernel developer background of the ScyllaDB team.

Compared to Libevent, Seastar provides a more complete programing model. Once a

programmer overcomes the initial challenge of learning Seastar, they can consistently write

huge asynchronous applications while keeping complexity at a minimum.

In contrast to other frameworks like NodeJS and Twisted, modern C++ helps avoid typical

callback confusion by making heavy usage of lambdas. There is also a coroutine like

programing model that ha s been recently added.

Another unique aspect of Seastar is the DPDK integration which allows Seastar to drive the

network card directly by providing its own optimized poll mode TCP/IP stack.

2.7.2 Performance Evaluation

This section presents a benchmark done with the custom Seawreak HTTP load generator

which was written by ScyllaDB in order to keep up with Seastarõs pace on a manycore

machine. Tests of a new Seastar-based HTTP server show that it is capable of ~7M

requests/second on a single node. Details of the benchmark are presented next.

This benchmark uses two identical IntelÉ Server System R2000WT servers. These servers are

configured as follows:

Ɓ 2x IntelÉ XeonÉ Processor E5-2695 v3: 2.3GHz base, 35M cache, 14 core (28 cores

per host, with HyperThreading to 56 cores per host)

Project No. 645402

MIKELANGELO Deliverable D6.1

Public deliverable

Ê Copyright Beneficiaries of the MIKELANGELO Project Page 42 of 94

Ɓ 8x 8GB DDR4 Micron memory

Ɓ 12x 300GB Intel S3500 SSD (in RAID5 configuration, with 3TB of storage for OS)

Ɓ 2x 400GB Intel NVMe P3700 SSD (not mounted for this benchmark)

Ɓ 2x Intel Ethernet CNA XL710-QDA1 (two cards per server, cards are separated by

CPUs. card1: CPU1, card2: CPU2)

Ɓ OS info: Fedora Server 21, update with the latest updates as of February 19, 2015.

Ɓ Kernel: Linux dpdk1 3.17.8-300.fc21.x86_64

Ɓ Default BIOS settings (TurboBoost enabled, HyperThreading enabled)

Figure 17. Seastar httpd performance evaluation.

The most important observation from the above Figure 17 is the linear scalability of the

Seastar programming model. This is mainly due to the sharded design of Seastar application.

Each request is assigned to a specific shard and all its processing and the response

generation remains within that shard. No locks are present in the code so no contention will

slow down the application.

To summarize Seastar allows to combine raw I/O hardware capacity with manycore machines

to write high IOPS server side applications.

An independent benchmark [62] comparing how Seastar performs against the competition

on a small machine with an HTTP workload has shown a two-fold performance improvement

on a small machine with a few cores and direct access to the network card enabled. The main

differentiator is the fact that the Linux kernel does not get in the way of accessing the

network card removing the underlying inefficiencies. On a many core machine the lack of

lock contention (two threads battling for a lock) inside Seastar would result in even greater

margin compared to other concurrent frameworks.

Project No. 645402

MIKELANGELO Deliverable D6.1

Public deliverable

Ê Copyright Beneficiaries of the MIKELANGELO Project Page 43 of 94

2.7.3 Implementation Evaluation

Seastar is written in about 50k lines of modern C++14 code. Unit tests represent

approximately 10% of the entire codebase. On top of Seastar and ScyllaDB there are multiple

test suites:

Ɓ C+14 unit tests with one suite for Seastar and one for Scylla

Ɓ A Fork of Cassandra dtest which does functional testing of the database using python.

Ɓ A Small artifact result test suite to check that the various distributions (dpkg/rpm) of

the database are well built.

Ɓ The scylla-cluster python test suite which test live clusters running on top of AWS EC2

Jenkins is used as a continuous integration tool for all the ScyllaDB projects running test

suites automatically for every commit. The development process of Seastar and Scylla is

modelled after the Linux kernel development process by using a public Google group as a

mailing list. Other sub-projects of lesser importance are developed using GitHub.

A general thought about the Seastar and Scylla code base is that it would fare well as a

showcase of what a modern C++14 code base should look like.

2.8 Side Channel Attack Mitigation

2.8.1 Architectural Evaluation

The purpose of Side Channel Attack Mitigation - SCAM - is to monitor cache activity to

identify potential cache -based side channel attacks and to mitigate against these attacks.

Architectures for mitigating the effects of such attacks are of three types: application-specific

software measures, application agnostic software measures and hardware changes to the

cache. SCAM is software only and is application agnostic.

Two notable examples of alternatives to SCAM are the specific protection that is part of the

OpenSSL [63] implementation of modular exponentiation (which is the critical component of

computing RSA signatures and DIffie-Hellman key exchanges) and Intelõs Cache Allocation

Technology (CAT) [64]. To the best of our knowledge, SCAM is the only architecture of the

second type that includes both monitoring and mitigation. As such it can initiate the

mitigation module only when the results of monitoring point to a possible attack taking

place. SCAM will include novel features compared to earlier proposals including fine-grained

monitoring of cache -sets and mitigation by adding noise to the cache.

It is safe to assume that application specific software measures have better performance than

the SCAM approach. In the case of OpenSSL, the mitigation measure increases the time

required for modular exponentiation by about 20% -30%, but since these operations occur

Project No. 645402

MIKELANGELO Deliverable D6.1

Public deliverable

Ê Copyright Beneficiaries of the MIKELANGELO Project Page 44 of 94

only during the handshake at the beginning of a session, and constitute only a part o f the

handshake, the overall effect on performance is very small.

Of course, the main advantage of SCAM over application specific measures is that it is

general and can protect a large range of applications.

Intelõs CAT enables configurable separation of the cache into different regions such that each

VM (or process) can be assigned an exclusive region. Since cache-based side-channel attacks

rely on the shared nature of the cache, CAT may neutralize these attacks. However, CAT is

being marketed as a performance enhancement for specific scenarios and will probably be

used for security only as an afterthought. If it becomes widely used then it is quite possible

that the mitigation module of SCAM will be necessary only in niche markets. However, the

monitoring module of SCAM will still be needed, unless separating the cache at all times

becomes the absolute norm in the market.

2.8.2 Performance Evaluation

The SCAM component is currently under development and it is too early to evaluate its

performance at the time of writing.

2.8.3 Implementation Evaluation

The main method for evaluating the quality of SCAM is testing it against the side-channel

attack that was developed in the first year of the project. To avoid over-fitting SCAM to the

specific implementation of the attack (rather than inherent characteristics of such attacks) we

continue developing the attack in parallel to the development of SCAM.

The main effort in developing the monitoring module has been devoted (so far) to

understanding the value of cache hit/miss counters that are provided in many modern

chipsets. These counters can be read in user space using the PAPI software library [65] and

provide information on the total number of cache accesses, hits and misses for various cache

levels over a user-defined time period. The advantage of this procedure is that it is relatively

cheap in terms of performance. Initial tests showed that the ratio of L2 misses to total

accesses easily distinguishes between our attack and a standard application (we used a web-

server under various scenarios to simulate an application). However, it turned out that it was

possible to tweak the attack in a way that essentially removes this distinction. The root cause

of the problem is that the a ttack focuses on one cache set at a time and does not necessarily

cause an unreasonable number of misses over the whole cache. Our next step will be to

gather information on specific cache sets. This step will require different tools, such as prime

and probe, and will be more performance intensive.

Project No. 645402

MIKELANGELO Deliverable D6.1

Public deliverable

Ê Copyright Beneficiaries of the MIKELANGELO Project Page 45 of 94

The mitigation module of SCAM is expected to comprise a noise sub-module and a page

manipulation sub-module. A prototype of the noise sub -module has been developed and

seems promising so far in that it completely prevents our attack and seems quite robust. It

works by testing the cache sets and adding noise, i.e. reading data, to the cache sets that are

most promising from an attackerõs point of view. The noise sub-module works across many

more sets than the attacker actually needs, but adding relatively little noise to a set seems

sufficient to ruin the attackerõs measurements.

Project No. 645402

MIKELANGELO Deliverable D6.1

Public deliverable

Ê Copyright Beneficiaries of the MIKELANGELO Project Page 46 of 94

3 Full Stack Evaluation

3.1 Introduction

A separate evaluation has been presented in the previous chapter for each of the

MIKELANGELO components that have been implemented to date. The project has also

dedicated significant resources into creating complete software stacks for both Cloud and

HPC deployments. An evaluation of the architecture and implementation of these full stacks

is presented in this section.

3.2 Full Stack for Cloud

For the full stack cloud deployment we evaluate the benefits of an integration of

MIKELANGELO components in a full cloud stack. Our choice for the cloud stack is OpenStack

for considerations laid out in Deliverable D5.1 First Report on the Integration of sKVM and

OSv with Cloud Computing [5]. While D5.1 presented an overview and comparison of various

cloud stacks to consider as the basis for MIKELANGELOõs cloud stack, this deliverable

considers the benefits of a full integration of the MIKELANGELO components. Each

component is evaluated individually with regards to the added value it brings to the cloud.

We move through our architecture bottom up, starting with the hypervisor sKVM, and ending

up with enhancements to OSv. Each component is evaluated with regards to criteria which

are of special importance to cloud providers, and by extension to cloud users. The criteria are

the difficulty of installation, the benefits gained from the component, potential for cross -layer

optim ization, and our future work on the component from the perspective of the cloud.

3.2.1 sKVM with OpenStack

Although we refer to sKVM as one component, there are actually three innovations

contributed to KVM by MIKELANGELO. The first innovation is IOcm, which improves IO

performance. The second innovation is SCAM, which improves the privacy of virtual machines

running via sKVM. The third is Virtual RDMA, which allows for efficient inter-VM

communication. Although all three components are integrated in sKVM their b enefits can be

reviewed independently. A holistic view of sKVM and further MIKELANGELO components

from the cloud perspective is described briefly in the following sections and more detail

regarding cross-layer optimization is available in deliverable D2.20.

3.2.1.1 IOcm

Installation . The installation of IOcm requires the use of a patched Linux kernel that contains

our modified version of KVM. In principle, the installation is straightforward for any

Project No. 645402

MIKELANGELO Deliverable D6.1

Public deliverable

Ê Copyright Beneficiaries of the MIKELANGELO Project Page 47 of 94

administrator. However, the requirement for a custom kernel raises trust issues and

potentially adds an additional step in the already complicated process of setting up large

infrastructures. Additionally the normal path to kernel updates, including security updates

would be broken. We are working to overcome this issue by disseminating our results to

push for an upstreaming of IOcm into the mainline Linux kernel. Currently, the patched kernel

has been evaluated with Ubuntu running on cloud hosts at GWDG.

Benefits . The benefits of IOcm lie in its ease-of-use and potential gains in IO performance. A

current evaluation on the Cloud stack focused on the functional aspects of IOcm. Thus, so far

no gains in IO performance have been pursued or measured. From a functional view it was

possible to run virtual machines with IOcm and dedicated IO cores. The dedication of cores

to IO on the testbed has been controlled manually to date. The new IOcm functionality

automatically dedicating cores to IO will be integrated when testing is complete.

Cross-layer optimization . Due to the early stage of integration there are no cross-layer

optimizations yet. However, IOcm offers great potential for cross-layer optimization. The

extra knowledge that a holistic view of the cloud provides can be leveraged to manage IO

resources globally throughout the data center. Furthermore, when including even the

application layer, such as in the case of big data applications, it will become possible to

provide even more targeted optimizations. IO capacity of individual hosts requires online

assessment and matching with cloud workload, especially big data workloads. IO-core

configuration presents a valuable opportunity for infrastructure optimization.

Future work . In future we want to provide integrated packaging which will allow a simpler

deployment of IOcm toge ther with the whole cloud stack. This should happen before IOcm

finds its way into the mainline Linux kernel. In addition to packaging, we will work on the

optimization of IO resources within a single cloud host. Beyond a single host, work will

commence to optimize IO resources across the whole cloud deployment.

3.2.1.2 SCAM

Installation . The installation of SCAM cannot be evaluated easily currently, since no

generally applicable version is yet available. In general, we expect that the installation of

SCAM will face similar hurdles to that of IOcm, as both are architected as kernel-extensions.

With SCAM there may be the additional obstacle that the implementation targets a specific

computer architecture. Thus, in comparison with IOcm, SCAM may face the additional issue

that some tweaking of code may be necessary to get it to work on a new processor. A

detailed analysis of the installation issues of SCAM, however, can only be provided once

SCAM is ready for installation in the cloud.

Project No. 645402

MIKELANGELO Deliverable D6.1

Public deliverable

Ê Copyright Beneficiaries of the MIKELANGELO Project Page 48 of 94

Benefits . The potential benefits of SCAM are increased security in the cloud. SCAM would

offer an increased level of privacy, particularly in public cloud offerings. Using SCAM, attacks

on the other VMs can be monitored and then mitigated against. Mitigation can take the form

of isolation of suspicious VMs or a general shutdown of those VMs and other VMs of that

tenant. Since we expect this extra security to require additional computing resources, such a

service can be offered as an additional option as part of an SLA (Service Level Agreement).

Cross-layer optimization . SCAM offers the potential for holistic monitoring of the cloud

with global regions with differentiated security levels. For example, the security and

mitigation feature can be combined with VM placement in the OpenStack Nova scheduler

and in MIKELANGELOõs extended online scheduler. With a holistic view the cloud layer can

manage when and where the SCAM component should monitor for suspicious VMs. A

differentiator between security levels may define the extent to which SCAM monitors for

suspicious activity. High-frequency monitoring will be more costly in terms of computation,

and thus pricing for the customer, but it will also offer increased security.

Future work . Currently, SCAM is being ported to hardware that is similar to that found in

GWDGõs cloud testbed. The next step after this porting process will be the rollout of SCAM at

GWDGõs testbed. The module will then be tested functionally. In addition, the performance

penalty of using SCAM will be assessed and trade-offs will be evaluated.

3.2.1.3 Virtual RDMA

Installation . The installation of Virtual RDMA has not been tried yet, since GWDGõs NICs are

not supported by the current prototype of the Virtual RDMA module. In general, we expect to

face mostly the same challenges and opportunities as with IOcm for Virtual RDMA. In

contrast to IOcm, Virtual RDMA contains additional code that runs in user space. This code

will need to be packaged and deployed separately. The deployment however can be aligned

with the deployment of the whole cloud via automated puppet scripts.

Benefi ts. Virtual RDMA offers benefits for inter-VM communication within a host and

between hosts. The communication within a host will provide improved efficiencies due to

zero-copy communication via IVSHMEM. Communication between hosts will use RDMA to

provide low overhead communication. Whether the latter will be available in a cloud setting

is unclear since the current prototype only works with specific RDMA-capable NICs. The use

of Virtual RDMA within hosts and between hosts can offer great benefits for a cloud setting,

especially considering that OSv is going to be used. With OSv, we expect to run many more

virtual machines, since each process requires its own instance. Thus, there will be more

communication between VMs, which in turn calls for a more efficient way of communication.

Project No. 645402

MIKELANGELO Deliverable D6.1

Public deliverable

Ê Copyright Beneficiaries of the MIKELANGELO Project Page 49 of 94

Cross-layer optimization . Virtual RDMA offers great potential for cross-layer optimization

due to its capability to provide efficient communication within a host and between hosts.

Cross-layer optimization using cloud -layer information can co-locate VMs or spread VMs out

across the data center to optimize based on communication patterns. In particular, a traffic

matrix can be generated to assess communication patterns. Based on the traffic matrix and

OpenStack Novaõs admission control it becomes possible to speed up communication by

colocation and activation of Virtual RDMA.

Future work . As future work of the integration of Virtual RDMA with the cloud, we will first

deploy the prototype in the cloud testbed and test performance for intra-host

communication. Further work will contain the implementation of cross -layer optimization and

a potential integration for inter -host communication.

3.2.2 Snap in the Cloud

Installation . Snap offers simple installation via binary packages. For installation from source

documentation is available as well. One of the major benefits of snap is its seamless

integration with typical monitoring environments. For example, the GWDG cloud test bed

uses collectd and InfluxDB for monitoring. Thanks to snapõs integration with collectd as

collector and InfluxDB as publisher snap has been deployed easily.

Benefits. The benefits of using snap in the cloud include flexibility due to its task model, and

its scalability, as well as those benefits of the seamless integration mentioned above. The task

model in particular allows improved integration with the cloud since it can monitor VMs

dynamically. Parameters such as resolution and types of monitored metrics can be adjusted

as needed using tasks. The scalability of snap is ensured by its distributed model. Another

benefit lies in the large number of supported metrics even though the project is relatively

young.

Cross-layer optimization. Snap enables cross-layer optimization as the central monitoring

tool. All cross-layer optimization in MIKELANGELO hinges on the swift availability of

monitoring data across the whole infrastructure stack.

Future work. In future snapõs integration with the cloud will be extended by a tighter

integration with OpenStack and by providing addition al metrics.

3.2.3 OSv

Installation . The installation of OSv in a cloud environment requires making an OSv instance

available as an image in OpenStack, or equivalent. In contrast to generic operating systems

such as full Linux distributions, OSv has the disadvantage that an instance that is bundled

with the application needs to be created. This approach is analogous to the creation of

Project No. 645402

MIKELANGELO Deliverable D6.1

Public deliverable

Ê Copyright Beneficiaries of the MIKELANGELO Project Page 50 of 94

Docker images. In the context of IaaS clouds, this concept is not yet widespread. However,

using the MIKELANGELO Package Manager (MPM) it becomes easy to deploy applications

bundled with OSv.

Benefits . OSv offers fast startup times, a small memory footprint, and good IO performance.

Many applications, as shown by our use cases, benefit from those features directly.

Cross-layer opti mization. OSv offers multiple opportunities for cross-layer optimization.

First, OSv will integrate with MIKELANGELO components to offer a tight integration. Second,

since OSv only runs one service per VM instance, larger services are split across multiple VMs.

Thanks to OSvõs small footprint the increased number of VMs is not an additional burden to

the infrastructure. However, the distribution of complex services across multiple OSv

instances allows a more fine-grained control of service allocation, which in turn allows for

better control of sophisticated Quality of Service (QoS) features.

Future work. Future work on OSv includes improving IO throughput, compatibility with

applications, and ease of use. To reach success in the cloud OSv will need to provide a very

simple way of deploying new applications. Thus, one of the more important aspects of OSvõs

integration with the cloud is further development of MPM.

3.3 Full Stack for HPC

Nowadays, in the design of big data and HPC scientific applications the target infrastructure

where the application will run is decisive. Two alternatives are commonly used: an HPC

cluster, i.e. a supercomputer, or a Cloud system. There are pros and cons to both approaches.

In Cloud systems the programmer can easily put entire software stack into a VM image and

the application will be executed unaware of the underlying hardware. On the other side,

cloud systems have a lower I/O performance. That is, virtualization offers near-zero overhead

for computation but can significantly deteri orate efficiency of I/O operations [66].

Virtual Machine images are typically based on a well-known operating system distribution of

Linux such as Ubuntu [11], Debian [67], or CentOS [68]. Linux has not been developed

specifically to be run as a guest OS in the cloud. Thus, it carries a lot of unnecessary baggage

in the form of legacy code that was intended for other purposes. This legacy code leads to

inefficiencies that result in different scopes like start-up times, computational throughput, I/O

performance, and disk image size. Most Linux distributions currently provide VM images that

are reducing these overheads in a form of cloud images. These images are still significantly

larger (300+MB Ubuntu cloud image [68] to about 50MB OSv) than comparable images

containing simple unikernels.

Project No. 645402

MIKELANGELO Deliverable D6.1

Public deliverable

Ê Copyright Beneficiaries of the MIKELANGELO Project Page 51 of 94

Scientific applications, like big data or HPC ones, still rely heavily on HPC clusters because the

application will benefit from higher computational and communication performance. On the

other side the programmer must adapt the application software stack to the specific

hardware, operating system and storage platform used in the cluster. Furthermore, cluster

administrators have to install software components like compilers or libraries as part of the

software available in the cluster for each user application to build it and execute it properly.

All of this typically leads to legacy and security issues, because the software cannot be

updated on a regular basis.

MIKELANGELO project aims to apply the flexibility of Cloud systems in HPC systems for big

data and HPC applications focusing in the improvement of the I/O performance in

virtualization mentioned before.

3.3.1 sKVM with HPC

sKVM will provide better IO performance and additional security components than the

default KVM. The integration of sKVM into the testbed involves IOcm, with new kernel

functions to allow better control over the I/O, a configuration tool for managing dedicated

I/O cores, virtual RDMA components for efficient communication and SCAM, the new security

components.

3.3.1.1 IOcm

The Linux kernel component which is developed by IBM is integrated by building a new

kernel. Ansible is used to roll out this newly built kernel across the HPC infrastructure. This

simplifies the installation process and ensures that nodes have the same kernel and the same

boot settings.

The second component is the static I/O core manager. This tool allows us to predefine the

cores of the host CPU that are dedicated I/O cores. These cores will handle all the VM I/O and

speed up the VMs input/outpu t operations. IOcm is deployed in our shared workspace (/opt),

and configured through Torque [69].

The integration of the newly developed dynamic core manager, which can handle IO core

allocation automatically is under development. This will replace the static manager and will

be able to react to the load changes inside the VM and allocate cores for IO dynamically.

Torque integration will still allow users to specify expectations about the I/O usage (for

example, in terms of minimum and maximum number of I/ O cores).

Project No. 645402

MIKELANGELO Deliverable D6.1

Public deliverable

Ê Copyright Beneficiaries of the MIKELANGELO Project Page 52 of 94

3.3.1.2 Virtual RDMA

The goal of MIKELANGELOõs new design of a virtual driver based on Remote Direct Memory

Access (RDMA) is to provide more efficient I/O, zero-copy, and improved cache-efficiency for

Inter-Process Communication (IPC) between virtual machines, running either on the same or

on different hosts.

In order to use the implemented virtual RDMA prototype I on HPC infrastructure, additional

integration was performed on the USTUTT testbed. The integration does not change any

logic of requesting HPC resources for the user. Internally the integration prepares all the

necessary services, daemons and environmental settings before the resources are assigned to

the user. Several shell scripts have been integrated with the Torque extensions, which hides

the complexity of the whole setup, eases the process of initializing the virtual RDMA

environment, and then provides the user with necessary connection interfaces to be used in

the configuration of the virtual machines. More details on how they are integr ated into the

HPC infrastructure are described in Deliverable D2.20 The Intermediate MIKELANGELO

Architecture [5].

3.3.1.3 SCAM

The SCAM module is still in development, and at the time of writing is not ready for

integration. Because the current scheduler strategy dedicates each node to a particular job,

SCAM is not yet relevant to the envisioned full stack HPC deployment at USTUTT. In future

versions of the HPC integration we might be supporting multi -tenancy on a node level.

However, SCAM will be integrated to evaluate the possible performance impact.

3.3.2 Snap

Snap has multiple functions in our testbed. One is to monitor the overall health of the cluster.

It is installed via Ansible on all nodes and is autostarted with its own startup script. All metrics

are published to an InfluxDB database located in a VM on the frontend. In a larger

environment this could be a distributed database, depending on the size of the cluster. We

have decided to host the entire monitoring logic in a dedicated virtual machine for additional

security and better flexibility. This VM also hosts the Grafana graphical interface, allowing

dashboards to be easily generated from the readings stored inside the database.

The other use of snap is to monitor job data itself. Each job submitted via Torque is

automatically tagged with the job id and user id. It allows the ready identification of related

monitoring data for users and jobs in the database, facilitating developers concerned with

the performance of their software, and administrators curious about their infrastructure. A

particularly interesting feature of snap is the ability for custom data collectors, processors and

Project No. 645402

MIKELANGELO Deliverable D6.1

Public deliverable

Ê Copyright Beneficiaries of the MIKELANGELO Project Page 53 of 94

publishers to be developed. This allows application specific metrics to be monitored in

parallel with data about the underlying infrastructure - both physical and virtual.

The integration of snap on the HPC test bed is largely complete at the time of writing.

Metrics have been successfully gathered, processed and published. However, an issue with

the InfluxDB client library is currently being investigated that prevents a stable continuous

monitoring.

3.3.3 OSv

The target guest operating system used in MIKELANGELO is OSv. Contrary to traditional

linux-based OSs it has been specifically built for Cloud computing from scratch. Some of the

most important features are:

Ɓ Optimized for running on top of a hypervisor: Xen, KVM or VMware.

Ɓ Single application, Single address space. The user application runs in the same

context as the kernel so context switches become light-weight.

Ɓ JVM Integration, Java programs can also run in OSv.

Ɓ REST API through HTTP for VM management.

Ɓ Virtual network based on channels with low latency and high throughput.

Ɓ ZFS file system that includes support for high storage capacities and efficient data

compression.

Ɓ Allows working with continuous integration systems and IDEs

Ɓ Easy deployment of VM images via the Capstan tool, also extended within

MIKELANGELO project.

Two major advantages of using OSv are transfer times for VM images and boot time for VMs.

OSv-VM images require only 12-20MB more than the application itself. Start-up times of OSv

usually lie under a second. Consequently, running applications (processes) inside OSv-based

images is almost the same as running these processes directly on host machines. This model

has further been extended with the changes made to the Capstan tool. Capstan is a system

for application deployment, and resembles Docker. In contrast to Docker, Capstan builds

complete virtual machine images with the OSv unikernel. MIKELANGELO integrates Capstan

to easily deploy applications with convenient interfaces.

3.3.4 Evaluation of the HPC-Stack

From the point of view of users, developers, administrators and infrastructure owners, the

benefits of this architecture are manyfold.

Project No. 645402

MIKELANGELO Deliverable D6.1

Public deliverable

Ê Copyright Beneficiaries of the MIKELANGELO Project Page 54 of 94

An important implication of the MIKELANGELO software stack is that applications are

provided as packages coming with their own custom, predefined environment. These

package images are targeted to support both Cloud infrastructures and HPC infrastructures.

Depending on the kind of scenario and software - whether open source or proprietary - the

users, administrators and software vendors need to compile applications for each HPC

environment with different compiler flags, and deal with different CPUs to get the best

performance for their app lications. Operating system, kernel version, kernel configuration, as

well as libraries available in a certain HPC environment may differ vastly from application

requirements to deliver, for example, the most accurate results or the best performance.

MIKELANGELO offers developers, as well as HPC users/admins, the flexibility to prepare, test,

debug and optimize applications on cheap commodity hardware, and then use them without

any change in HPC environments, as well as Clouds.

Users with running jobs on failing systems as well as administrators will benefit significantly

from the virtualization layer, as it will enable them to migrate or suspend and resume running

applications in cases where maintenance is urgently required. Furthermore, checkpointing

and restarting applications that require a longer runtime than available in certain HPC

environments is also supported. The so-called wall-time for a job which may be a matter of

hours or days can thus be accommodated.

Despite all these advantages, running HPC applications on Cloud is typically avoided due to

the significant overhead costs that virtualization often implies. HPC applications, as the name

indicates, are applications that require high performance, thus noticeable overhead is

generally not tolerated , and not profitable. Even minimal reductions in performance can lead

to significant additional expense.

Some features mentioned above, like checkpoint and restart, and live migration to spare

nodes, are subject to future work. Other limitations also exist, such as that interactive jobs are

currently not possible with virtual guests, since that requires modification of Torqueõs source

code. Another limitation is the circumstance that even if the job actually runs in an HPC

environment and the PBS variables are set in the guest, too, they will not be available to MPI

applications. The reason for this limitation is the fact that whenever MPI detects a PBS

environment, it expects a daemon running in the other guests.

This section describes which components are integrated and points out with functional tests

what is already working. In addition, the initial performance data are provided to illustrate the

progress of the integration of the different components developed inside MIKELANGELO.

Project No. 645402

MIKELANGELO Deliverable D6.1

Public deliverable

Ê Copyright Beneficiaries of the MIKELANGELO Project Page 55 of 94

3.3.4.1 Functional Tests

The following seven functional tests cover the integration at a high level. They test a certain

feature that has been implemented in the Torque extensions and verify and validate its

functionality.

1) Test Case: Test VM Instantiation

Description : Submit a job with VM resource requests to Torque, check if VM(s) get

booted before the actual job starts, and destroyed after the job has finished.

Rationale: Test the functionality of the VM submission

2) Test Case: CPU count; CPU Pinning

Description : Submit a Job with a lower CPU count than the physical machine. See

that the calculating thread is not moved to another core.

Rationale: Test the functionality of CPU Pinning - moving threads can harm the

performance.

3) Test Case: Multi VMs per Node

Description : Submit a job with more than one VM per node.

Rationale: Test multiple VMs can run on one node.

4) Test Case: Interactive non-VM Jobs

Description : Submit an interactive job, without a VM.

Rationale: Test if the original functionality is unharmed.

5) Test Case: Qsub Submitted Jobs

Description : Submit without new functionality.

Rationale: Test if the original functionality is unharmed.

The results of these tests are provided in Appendix A.

3.3.4.2 Performance Measurements

To validate functionality and evaluate the performance of the HPC part of the MIKELANGELO

software stack, the following measurements were taken with USTUTTõs use case, the

cancellous bones HPC application.

A list of metrics that covers most of the implementation has been compiled to get deep

insights into the HPC stack. These metrics cover aspects like I/O, network and CPU behaviors,

to compare the physical machine with virtual guests. For more accurate results each

measurement was taken several times and is taken on different physical machines with the

same configuration. This setup allows minor performance variations due to minor physical

hardware differences to be minimized and dropped out of the comparison. A key indicator is

the plain runtime of the application: the faster it finishes, the more performant the

MIKELANGELO software-stack works.

Project No. 645402

MIKELANGELO Deliverable D6.1

Public deliverable

Ê Copyright Beneficiaries of the MIKELANGELO Project Page 56 of 94

In order to run at small scale, the Cancellous Bones Simulation (as described in Deliverable

D2.1 First Cancellous bone simulation Use Case Implementation strategy [5]) is set up in such

a way that it can run on between 3 and 16 cores. To fully exercise these cores, and taking the

actual cancellous bones dataset that is being analysed into consideration, the number of HPC

domains to be calculated was set to be 28. This means that each core calculates at least one

domain, but a few cores have to calculate two or more. The input data is always the same

subset of the big domain cube to allow comparable results in each run. The simulation was

submitted to Torque five times in a row and the simulation setup stayed the same for the

domains.

Table 6. Cancellous Bones environment setup.

 Host VM

Operating System Ubuntu 14.04

MPI Version (Open MPI) 1.6.5 1.0.2ubuntu1

(openmpi_1.6.5)

Runtime library for GNU

Fortran applications

 4.8.4-2ubuntu1~14.04.3

Figure 18. Runtime of the Cancellous Bones Simulation over different numbers of Cores.

Project No. 645402

MIKELANGELO Deliverable D6.1

Public deliverable

Ê Copyright Beneficiaries of the MIKELANGELO Project Page 57 of 94

Due to the scale down regarding total CPUs and the reduced data set, the behavior of the

simulation at small scale is counterintuitive. The bare metal measurements are way slower

than the VM counterparts, until 10 cores are assigned. Also, the pinned CPUs are slower. This

behavior is not expected and will be further investigated and analysed.

Table 7. Runtime measurements of VM in seconds. Shaded cells are considered outliers.

of cores Pinning Run 1 2 3 4 5 Average

3 Yes 450.182 7657.472 462.905 451.429 452.738 454.313

No 435.878 430.644 437.273 7632.577 414.950 429.686

5 Yes 355.609 286.970 280.625 283.963 7490.347 301.7991

No 248.824 274.856 281.903 247.289 248.761 260.326

10 Yes 277.843 236.386 252.693 278.626 229.831 255.075

No 241.514 237.140 247.203 242.982 258.187 245.565

Table 8. Runtime measurements without VM (bare metal) in seconds.

of cores Run 1 2 3 4 5 Average

3 441.297 811.929 800.799 813.715 826.260 738.800

5 569.638 544.075 576.595 367.941 366.035 484.856

10 238.477 254.754 244.834 249.057 236.006 244.625

16 251.883 241.773 258.975 240.374 249.820 248.565

The three values for VMs with 3 cores and VMs with 5 cores that caused values bigger than

7000 seconds are treated as outliers and have not been considered for the calculation of the

average runtime.

For the next period we need a more fine-grained view on the use case as well as the HPC part

of the MIKELANGELO software-stack. Therefore more metrics are needed, such as those listed

below.

Project No. 645402

MIKELANGELO Deliverable D6.1

Public deliverable

Ê Copyright Beneficiaries of the MIKELANGELO Project Page 58 of 94

List of metrics:

Ɓ Network - measure connections and communication between nodes

ƺ Bytes_recv

ƺ Bytes_sent

ƺ Packets_recv

ƺ Packets_sent

Ɓ CPU - measure usage of the CPU resources

ƺ avg - cpu/%user

ƺ avg - cpu/%idel

ƺ avg - cpu/%system

Ɓ Disc - measure File I/O behavior

ƺ rkB_per_sec

ƺ wkB_per_sec

ƺ Avgrq - sz

ƺ Avgqu - sz

Ɓ RAM - measure usage and distribution of the memory resources

ƺ Available

ƺ Buffers

ƺ Free

ƺ Cached

ƺ used

These metrics will be collected on the host system, as well as inside the VMs. Intel's snap

monitoring framework is capable of collecting these metrics and will enable a deeper insight

to be gained into the infrastructure and hosted applications.

3.3.4.3 Evaluation of M PI and NFS inside OSv

To evaluate the implementation of the full stack of HPC software an MPI+NFS OSv image has

been built. The build command used was the following one:

scripts/build image=OpenMPI,openmpi - hello,hosts,cli,httpserver \
 - j16 nfs=true

The test code is based on the MPI Hello World application that can be found under the

/osv/mike - apps/openmpi - hello directory in the OSv source code repository. This MPI

Hello World has been modified for the MPI processes to write into a shared file instead of t he

standard output.

Four OSv-VMs were created and allocated across two physical nodes, with two VMs per node.

In this way intra-node and inter-node MPI communication is tested. This particular test

Project No. 645402

MIKELANGELO Deliverable D6.1

Public deliverable

Ê Copyright Beneficiaries of the MIKELANGELO Project Page 59 of 94

doesnõt use Torque to build the execution environment in order to simplify the isolation of

possible errors. Below is the output file of the test execution:

user@node0101:/scratch$ cat ompi - hello.out

Hello world! I am process number 0 of 4 on VM: 172.18.2.247

Hello world! I am process number 1 of 4 on VM: 172.18 .2.239

Hello world! I am process number 2 of 4 on VM: 172.18.2.231

Hello world! I am process number 3 of 4 on VM: 172.18.2.223

Each of the four VMs mount a shared file-system in the directory /scratch using NFS at

boot time. Then the MPI program is launched in the first VM and spawns automatically to the

other virtual nodes. Once all the MPI processes are running, that is, one MPI process per VM,

the MPI processes wait in a synchronization barrier before printing their output into the

shared file as shown above.

A more complex scenario with more VMs and physical nodes could help to reveal possible

scaling issues related to MPI or NFS on OSv that are currently hidden. However, when

repeating the described test, failures have sometimes been observed. The error reported then

is:

--------------------------------------- ------------------------------

ORTE has lost communication with its daemon located on node:

 hostname: 172.18.2.247

This is usually due to either a failure of the TCP network

connection to the node, or possibly an internal failure of

the daemon itself. We cannot recover from this failure, and

therefore will terminate the job.

--------------------------------------- ------------------------------

program exited with status - 108

Successive runs of the test also fail with the following error, a result of the fact that the

shared directory can no longer be mounted:

Failed to load object: tools/mount - nfs.so. Powering off.

We are continuing with the investigation of these issues to stabilize integratio n of MPI and

NFS into OSv. However, preliminary tests already look encouraging.

3.3.5 Conclusions and Next Steps

Most of the components for the HPC-Stack are integrated in a first version. In the following

months these components will be refined and finalized, and their integration completed. The

process of installing the Torque modifications will be further automated and documented.

Project No. 645402

MIKELANGELO Deliverable D6.1

Public deliverable

Ê Copyright Beneficiaries of the MIKELANGELO Project Page 60 of 94

More fine-grained data will be collected to get a deeper understanding over the performance

bottlenecks of VMs compared to bare-metal execution, but already almost 3.500 jobs have

been submitted via Torque in the process of developing, testing and evaluating this

emerging HPC stack.

Project No. 645402

MIKELANGELO Deliverable D6.1

Public deliverable

Ê Copyright Beneficiaries of the MIKELANGELO Project Page 61 of 94

4 Use Case Architecture and Implementation Evaluation

4.1 Introduction

Four use cases that span cloud computing and HPC drive the requirements, evaluation, and

verification of MIKELANGELOõs overall architecture. This chapter describes these case studies,

highlighting advantages, considerations and limitations discovered or confirmed when

putting the MIKELANGELO stack to work.

The cloud bursting use case targets improvements in dealing with bursts of requests for

internet services. There are two important metrics that drive how well a cloud handles cloud

bursts: transfer times for VM images and boot times for VMs.

The first HPC use case deals with the simulation of cancellous bones on a virtualised

environment and has already been described in Section 3.3.5 as part of the HPC Stack

evaluation.

The second HPC use case runs simulations in computational fluid dynamics with OpenFOAM.

In this use case OpenFOAM is ported to OSv and combined with sKVM and RDMA.

The Big Data use case primarily targets Apacheõs big data stack including Hadoop [6], which

will be managed using OpenStack Sahara [70].

These use cases test how effectively the emerging MIKELANGELO architecture is providing a

powerful framework to increase the performance, security, and flexibility available to users

and administrators in the world of Cloud and HPC.

4.2 Case Study: Cloud Bursting

4.2.1 ScyllaDB

ScyllaDB is the first big and real -world application written using Seastar. It acts as a Seastar

showcase allowing the ScyllaDB team to exercise and enrich the framework. It also brings a

viable revenue stream to the company behind the framework and the database.

In essence ScyllaDB is a faster Cassandra drop-in replacement.

The following benchmark compares Scylla and Cassandra on a small cluster with replication

factor 3 and statement consistency level QUORUM [71].

4.2.1.1 Test Bed

The test was executed on physical machines. The following configurations were used:

Project No. 645402

MIKELANGELO Deliverable D6.1

Public deliverable

Ê Copyright Beneficiaries of the MIKELANGELO Project Page 62 of 94

3 DB servers (Scylla / Cassandra):

Ɓ Bare metal server

Ɓ CPU: 2x 12-core Intel(R) Xeon(R) CPU E5-2690 v3 @ 2.60GHz, with hyperthreading

Ɓ RAM: 128 GB

Ɓ Networking: 10 Gbps

Ɓ Disk: MegaRAID SAS 9361-8i, 4x 960 GB SSD

Ɓ OS: Fedora 22 chroot running in CentOS 7, Linux 3.10.0-229.11.1.el7.x86_64

Ɓ Java: Oracle JDK 1.8.0_60-b27

Ɓ Scylla version: 0498cebc58b9fbadb25a7b018cebf95d965d88da

Ɓ Cassandra version: 2.1.19

22 load servers (cassandra-stress):

Ɓ VM server

Ɓ XEN hypervisor

Ɓ CPU: Intel(R) Xeon(R) CPU E5-2683 v3 @ 2.00GHz, 16 logical cores

Ɓ RAM: 16G

Ɓ Networking: 1 Gbps

Ɓ OS: CentOS 7, Linux 3.10.0-229.7.2.el7.x86_64

All machines were located in the same data center.

4.2.1.2 Workloads

Three workloads were tested:

ǒ Write only:

cassandra - stress write cl=QUORUM duration=15min \

- mode native cql3 \

- rate threads=700 - node $SERVERS

ǒ Read Only:

cassandra - stress mixed cl=QUORUM \

'ratio(read=1)' duration=15min \

- pop 'dist=gauss(1..10000000,5000000,500000)' \

- mode native cql3 - rate threads=700 - node $SERVE RS

ǒ Mixed: 50/50 Read/Write:

cassandra - stress mixed cl=QUORUM \

'ratio(read=1,write=1)' duration=15min \

- pop 'dist=gauss(1..10000000,5000000,500000)' \

- mode native cql3 - rate threads=700 - node $SERVERS

Project No. 645402

MIKELANGELO Deliverable D6.1

Public deliverable

Ê Copyright Beneficiaries of the MIKELANGELO Project Page 63 of 94

4.2.1.3 Cassandra results

The following table contains statistics of total operations per second by workload in the

whole cluster:

Table 9. Queries metrics for Cassandra cluster.

Workload Average Stdev Min Max

write 125,224 12,382 105,436 166,314

read 48,291 19,238 26,631 98,353

mixed 65,950 20,179 1,592 88,847

4.2.1.4 Scylla results

The following table contains statistics of total operations per second by workload in the

whole cluster:

Table 10. Queries metrics for ScyllaDB cluster.

Workload Average Stdev Min Max

write 1,930,833 3,190 1,650,625 2,010,829

read 1,951,835 1,873 1,943,209 1,955,225

mixed 1,552,604 68,185 1,094,988 1,651,162

The following figure shows average results from the above two tables in a chart to show the

performance improvement of this benchmark.

Project No. 645402

MIKELANGELO Deliverable D6.1

Public deliverable

Ê Copyright Beneficiaries of the MIKELANGELO Project Page 64 of 94

Figure 19. Comparison of the number of transactions in Cassandra and ScyllaDB cluster.

An external and independent benchmark comparing ScyllaDB against the Cassandra is

presented in [72]. Relatively small machines have been used for the test, however even this

small cluster shows that ScyllaDB outperforms Cassandra by a factor of two for write

operations. As suggested above and also in the comments to this benchmark, even more

benefits are expected in large clusters with powerful CPUs.

4.2.2 Evaluation and Validation of the Cloud bursting use case

One of the key concepts of cloud services is elasticity. Elasticity is the capacity to quickly grow

or shrink the size of a cloud computing resource allocation. When the workload suddenly

increases the computing resource allocation can grow, consuming more hardware, and when

the workload decreases the computing resource can shrink, consuming less hardware.

Elasticity is in essence the core of the cloud computing promise. To do so the computing

resource (in the scylla case a database) must be able to evolve in size very dynamically

without altering its nominal behavior. The extreme case of elasticity is given by Amazon

Lambda [73] because it allocates computing resources to execute code snippets on the fly

and the granularity of the allocation is very small (a code function). Here in the cloud bursting

use case elasticity must be a property of a ScyllaDB [57] cluster (A group of machines working

together to serve a ScyllaDB database). The performance of the regular usage of the resource

must stay the same during the growth.

The scylla-cluster-test [74] tests available on GitHub have been enhanced with a custom

script grow_cluster_test.py that triggers a cloud bursting use case in the EC2 infrastructure.

Project No. 645402

MIKELANGELO Deliverable D6.1

Public deliverable

Ê Copyright Beneficiaries of the MIKELANGELO Project Page 65 of 94

A minimal 3-node cluster will be started and then grown to either 4, 5 or 30 nodes in a

minimal amount of time. This unit test execution time is measured and compared against

Cassandra before being graphed out.

The ScyllaDB cluster will need to grow quicker than Cassandra while keeping its regular use

case performance. The first point will be addressed trivially by the fact that Scylla is faster

than cassandra; the second point is to be addressed.

The following evaluation shows an intermediate result of the work on the cloud bursting use

case (full comparison is not yet possible at this point). The two graphs compare the

behaviour of two different versions of ScyllaDB while adding a new database node to the

cluster. The first graph (Figure 20) shows a huge decrease in the number of operations when

streaming occurs, while the second one shows a smoother transition as a result of our

improved implem entation of the Seastar framework and ScyllaDB database.

Figure 20. Reduced performance during expansion process with ScyllaDB 1.1.

