
Project No. 645402 

MIKELANGELO Deliverable D3.2 

 

 

Public deliverable 

Ê Copyright Beneficiaries of the MIKELANGELO Project     Page 1 of 48 

 

 

MIKELANGELO 

D3.2 

Intermediate Super KVM - Fast virtual I/O hypervisor  
 

Workpackage 3 Hypervisor Implementation  

Author(s)  Joel Nider IBM 

Ofer Biran IBM 

Razya Ladelsky IBM 

Shiqing Fan Huawei 

Fang Chen Huawei 

Gabriel Scalosub BGU 

Niv Gilboa BGU 

Reviewer Gregor Berginc XLAB 

Reviewer Nadav Harel SCYLLA 

Dissemination 

Level 
PU 

 

Date Author  Comments Version Status 

2016-12-01 Joel Nider Initial draft  V0.0 Draft 

2016-12-11 Niv / Gabriel SCAM section ready V0.1 Draft 

2016-12-14 Fang/Shiqing vRDMA section ready v0.2 Draft 

2016-12-15 Joel Nider Ready for review v1.0 Review 

2016-12-22 Joel Nider Ready for submission v2.0 Final 

  



Project No. 645402 

MIKELANGELO Deliverable D3.2 

 

 

Public deliverable 

Ê Copyright Beneficiaries of the MIKELANGELO Project     Page 2 of 48 

Executive Summary 

sKVM, the super KVM, is an enhanced version of the popular Kernel-based Virtual Machine 

(KVM) hypervisor. The enhancements are both in virtual I/O performance as well as VM 

security. sKVM improves the performance of virtual I/O devices, such as disks and network 

interfaces, by changing the underlying threading model in the virtual device backend (vhost). 

sKVM furthermore provides a new type of virtual I/O device: virtualized RDMA (Remote Direct 

Memory Access) device. This device abstracts the behaviour of the physical RDMA device and 

offers the flexibility of the virtualized infrastructure by reducing the performance overhead of 

existing solutions. In addition, the SCAM security module enables sKVM to protect its virtual 

machines from attacks perpetrated by co-located virtual machines that may be trying to steal 

SSH cryptographic keys. 

During the past year (second year of the MIKELANGELO project) the 3 features that enhance 

KVM have developed and matured to a point that allowed for performance testing and 

evaluation under lab conditions. This report explains the modifications made to bring the 

features to this point, and also shows the evaluation of features under various use cases. 

Instructions are provided to download and build the code required for reproducing the 

experiments. 

In the coming year, the goal is to complete the implementations to maximize performance 

and functionality, and integrate these features to operate together to truly become super 

KVM. 
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1 Introduction  

This document describes our developments during the past year of the 3 features of super 

KVM (sKVM):  I/O core manager (IOcm), lightweight RDMA para-virtualization (vRDMA), and 

side channel attack monitor and mitigation (SCAM).  

The sKVM architecture has first been described in detail in report D2.13[1], and later updated 

in D2.20[3]. The following figure shows all the components that constitute the highly 

optimised new kernel-based hypervisor: IOcm, vRDMA and SCAM. These three features 

together are known as sKVM (super KVM), and each enhances a different aspect of the 

hypervisor to strengthen various use cases. 

 

Figure 1: The high-level architecture diagram of sKVM 

The KVM hypervisor depends on the virtio[4] protocol to implement v irtual I/O devices for 

guests. The backend of the virtio protocol is implemented in a Linux kernel module called 

vhost. IOcm extends the vhost module to provide more control over the allocation of 

resources for handling virtual I/O. The resources are controlled from a user-space application, 

namely the IOmanager, which monitors system performance and tunes vhost parameters 
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accordingly. Section 2 provides details about the design, implementation and evaluation of 

IOcm. 

A lightweight RDMA para-virtualization solution (a.k.a. vRDMA) has been designed and the 

second phase has been implemented this past year. Unlike IOcm which relies on virto, 

vRDMA implements its own extensions to the virtio protocol and a backend driver that 

manipulates the real RDMA operation on the physical RDMA-capable device. The details of 

the implementation and evaluation are found in section 3.  

The third feature of sKVM is not a performance feature, but a security feature. Side channel 

attack monitor and mitigation (SCAM) is designed to d etect and defeat a covert attack 

perpetrated by a co-located VM intended to discover secret cryptographic keys from the 

victim VM. The attack is carried out by gleaning knowledge through the difference in 

behaviour of shared resources (in this case, the cache) depending on the value of the keys. 

The details of the attack, defence and evaluation of the defense are found in section 4. 
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2 IOcm and Future Features 

IOcm is a mechanism to control shared virtual I/O threads. It makes decisions about resource 

allocation to ensure maximum I/O performance for virtual machines. The architecture, design 

and implementation of IOcm is described in its entirety in deliverables D3.1[2] and D2.13[1], 

and updated by D2.20 - The intermediate MIKELANGELO architecture[3]. In a nutshell, the 

principle is to segregate a set of CPU cores whose purpose is dedicated to exclusively 

handling virtual I/O. Each such CPU core runs only a single thread - a shared virtual I/O 

thread - to avoid context switching on this core. We call these dedicated cores òI/O coresó. 

The remaining CPU cores run remaining processes including VMs and other hypervisor 

threads (not related to virtual I/O).  

This year we implemented the user-space IOcm policy manager, which is an application that 

samples the I/O activity statistics, calculates  how  pressured  the VMs and I/O cores are, and 

selects the appropriate number of I/O cores for maximum performance. 

In some cases, the baseline model works better than the side-core model, where cores are 

dedicated for I/O. The policy manager can decide to release all I/O cores and fall back to the 

baseline model, where each virtual device has a corresponding I/O thread. In the case where 

the side-core model is beneficial, the manager also needs to decide which I/O devices are 

handled by which I/O core, in order to balance the load across the I/O cores. 

We have constructed an adaptive algorithm that the policy manager uses to make its 

decisions. The basic policy is based on measuring the CPU load on the two types of cores: 

Ɓ if the I/O cores are loaded, and the VM vCPU cores are not, then add an I/O Core 

Ɓ if the I/O cores are not loaded, and the VM vCPU cores are loaded, remove an I/O 

Core 

The manager uses the IOcm API to constantly determine the best the configuration of vcpu 

cores vs. I/O cores, at any point of the workload run, in order to maximize throughput. It uses 

the statistics coming from the kernel to make a decision about the number of I/O cores that 

would be optimal at that moment, and uses the control mechanism to take t he proper action. 

The statistics are checked by the IO manager every 0.01 seconds (100 times/second), but 

requires several iterations to build a history on which to base a decision. 
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2.1 IOcm Architecture  

 

Figure 2: IOcm architecture. IOcm changes the number of I/O cores according to the workload.  

Figure 2 depicts the two components of IOcm: IOcm Policy manager, and IOcm-vhost. The 

policy manager collects statistics regarding the I/O activity (collected and exposed by IOcm-

vhost) and uses them to control the number of IO cores. The number of I/O cores needed to 

handle the I/O load depends on the (possibly dynamic) workload type (compute vs. I/O 

bound).IOcm API implementation was introduced in D3.1. Functionality was implemented in 

the kernel, as part of the vhost module, and exposed to user-space via the sysfs 

mechanism[6]. The API includes functions to control the I/O cores and devices, and retrieve 

statistics about the resource utilization.  

2.2 Building And Configuration IOcm  

2.2.1 Getting the IOcm Source 

We have completed the development of the IOcm feature in sKVM, and the code is made 

available as part of the deliverable through a publicly available git repository. 

To get a copy of the IOcm kernel code, clone this git repository: 

https://github.com/mikelangelo - project/linux - 3.18.y  

To get the IOcm policy manager code, clone this git repository: 

https://github.com/mikelangelo - project/dynamic - io - manager  

https://github.com/mikelangelo-project/linux-3.18.y
https://github.com/mikelangelo-project/dynamic-io-manager


Project No. 645402 

MIKELANGELO Deliverable D3.2 

 

 

Public deliverable 

Ê Copyright Beneficiaries of the MIKELANGELO Project     Page 11 of 48 

2.2.2 Building and Installing IOcm Kernel 

IOcm kernel code is implemented as a set of patches on top of the official upstream Linux 

kernel version 3.18. The repository above reflects that, and contains the IOcm patches as well 

as the base Linux kernel in a single location. To compile a kernel that supports IOcm, please 

follow the normal method for building a Linux kernel,  which is summarized here for 

convenience. 

make defconfig  
<add modifications  to  the  . config  according  to  appendix  A ( as needed)>  
make 
make modules_install  
make install  

 

Once the kernel containing IOcm support is built and installed, the host machine must be 

rebooted in order to use this new kernel. The new kernel only adds support required for 

IOcm functionality, and will not affect the operation of any existing interfaces or applications.  

2.2.3 Configuring and running the IOcm Manager 

The IOcm manager is a python application. It requires a configuration file which specifies 

parameters such as the number of CPU cores that are to be managed, and the network 

interfaces that can route traffic to virtual machines. When setting up the environment,  each 

virtual machine should be connected to the physical network through macvtap[24], a Linux 

(virtual device) driver which connects the the VMs to a physical NIC without the need for a 

virtual bridge, thereby improving performance.  

To create a configuration file, run: 

src / create_configuration_file . py <num cores > <if_name [, 2nd_if_name ]>  [ OPTIONS] 

 

Where: 
num_cores:  The number of cores to be managed by IOcm ( for  both virtual  machines and 
I / O threads ).  This  must be less - than or  equal to the number of active cores in  your 
system.  
if_name :  The physical network interface  name used by the virtual  machines.  
2nd_if_name :  An additional physical network interface  name ( for  balancing the load 
between two physical interfaces)  
By default ,  the configuration file ( io_manager_configuration . json )  is  stored in  / tmp.  
OPTIONS 
-- config  override  the default  configuration file path  
-- min  Minimum number of IOcores  allowed ( default :  0)  
-- max  Maximum number of IOcores  allowed ( default :  4)  
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To start the iomanager, use: 

src / start_io_manager . py [ OPTIONS] 

 
OPTIONS 
- c,  -- config  Override  the default  configuration file path  
- p,  -- process  Run as a regular process ( not  a daemon)  and direct all output to 
stdout / sterr  

 

To stop the iomanager if the iomanager is running as a daemon (default), simply use: 

src / stop_io_manager . py 

 

Otherwise (if the -p option is used when starting), Ctrl+C is sufficient to stop the iomanager.  

If you wish to change the configuration of IOcm for some reason (i.e. the maximum number 

of IOcores), the service would need to be stopped, and then restarted with the new 

configuration file.  

2.3 IOcm Evaluation 

Test-bed  

Our testbed system consists of two physical machines: a Host and a Load Generator, as 

shown in Figure 3. The two servers are IBM System x3550 M4 machines, each equipped with: 

two 8-core Intel 2.2GHz Xeon E5-2660 CPUs; 56GB memory; and two Intel x520 dual port 

10Gbps NICs (network interface cards), allowing a total throughput of 40Gbps. The hypervisor 

is KVM with QEMU 2.4, hosting virtual machines configured with one virtual CPU and 1GB of 

memory each, backed by huge pages of 2MB to maximize performance (by minimizing 

paging and page management overhead). 

All host machines run Linux 3.18. Hyperthreading and all power optimizations are turned off, 

namely sleep states (C-states) and DVFS (Dynamic Voltage and Frequency Scaling). This is 

done in order to obtain consistent results and to avoid reporting artifacts caus ed by non-

deterministic events. 

In all our experiments, unless stated otherwise, we use 12 virtual machines, each with a single 

paravirtual NIC. We divided the virtual machines into 4 groups, each of which shares one 

10Gbps NIC port. Each virtual machine is connected to the physical network through the 

hypervisor, but without any software bridge to connect the virtual machines to each other. 

Instead, the virtual machines connect to the network through a macvtap virtual interface. 
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Macvtap is a device driver in the Linux kernel that connects the VMs to a physical NIC without 

the need for a virtual bridge, improving performance.  

The machines are connected in a back-to-back fashion as depicted in Figure 3. 

 

Figure 3: Test system setup 

Methodology  

We consider ELVIS as the state-of-the-art side-core approach. We evaluate IOcm against the 

I/O models we have considered thus far: the KVM/virtio baseline as the state-of-practice, and 

a group of ELVIS configurations we denote as Best. In each of our experiments we tested a 

wide range of ELVIS configurations as shown in this section. The best line in each graph 

represents the best performing ELVIS configuration for each test case (i.e. optimum number 

of IO cores). We perform each experiment 5 times and present averages. 

Benchmarks  

Previous work[5] concentrated on presenting and optimizing the side -core approach for 

under-committed systems with a single side-core per socket. We concentrate on over-

committed systems with multiple side -cores per socket. The side-core approach divides the 

cores in the system into I/O cores and VM cores, so increasing the number of I/O cores 

causes the number of VM cores to decrease. As such, adding more I/O cores does not 

necessarily increase the overall throughput of the system, as the resources available to the 

virtual machines decrease. To improve system performance, the I/O manager must find the 

balance. 

We use the following benchmarks: 

1. Netperf TCP stream [7] 

2. Netperf TCP stream with varying message cost 

3. Apache HTTP web server [8] 

4. Dynamic workload 
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For a micro benchmark, we choose to test our system with a well-known and versatile 

network based benchmark, Netperf, which is used to test both throughput and latency of the 

network as a system. We use Netperf with different configurations and perform various tests 

to simulate a real-life workload. 

Netperf TCP Stream  is a unidirectional transfer of data over a TCP/IP connection using 

Berkeley sockets. This test is a common measurement for the maximum throughput 

achievable in the system. The òBestó line is created by running all possible ELVIS 

configurations (with 1 I/O core, 2 I/O cores, 3, etc) and selecting the configuration with the 

best performance for each message size.  The number of I/O cores selected is written above 

each data point. 

 

Figure 4: Performance comparison of netperf TCP stream between the baseline (unmodified), the best I/O core 

configuration, and IOcm 

As we see in Figure 4, IOcm performed on par with the best static side-core configuration, 

trailing by at most 10% (2.1Gbps), with a message size of 256B. This gap is due to the fact 

that the I/O manager thresholds make it fluctuate between three and four s ide-cores. When 

four IO-cores are in use, the VM-cores are fully saturated and the IO-cores' utilization hovers 

on the threshold that triggers the I/O manager to reduce the number of IO -cores, which 

results in a loss of throughput. After the I/O manager re moves a core, the regret policy 

identifies the degradation in throughput and reverts to the previous configuration. IOcm 

found the optimum configuration within about 0.47 seconds, or 47 iterations. About half of 

the iterations were spent on making sure that the change in configuration is beneficial - the 

first part of the regret policy.  

TCP Stream with varying message cost  uses the Netperf TCP/IP stream test, but with a 

modification inside vhost which performs a variable time, busy-loop delay before sending 
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data. The busy-loop delay simulates a CPU-intensive workload that could potentially be done 

by the hypervisor during interposition, such as compression, encryption, or network traffic 

analysis (such as virus or intrusion detection). We send 2KB messages with busy-loop delays 

of 0-35000 cycles before each transmission. 

 

 

Figure 5: Performance of TCP stream with a varying delay in the hypervisor when transmitting packets 

By the results shown in Figure 5 we can see that IOcm performs as well as the best static 

configuration, with a maximum of 1% deviation. Moreover, we see that IOcm (green) 

outperforms the baseline (red) in every case by between 15% to 72% (average of 54%). 

Apache HTTP web server.  We configure the Apache server to send static HTML pages with 

various sizes, from 64 bytes to 1MB. As shown in Figure 6, IOcm approaches the optimum 

defined by the best static side-core configuration for all HTML page sizes, with a deviation of 

at most 1%. When compared to the baseline paravirtual configuration, IOcm surpasses the 

performance for all HTML page sizes. 
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Figure 6: Running Apache Bench with static HTML page sizes of 64B-1MB 

Figure 6 shows the benefit of side-cores in Apache bench (macro benchmark). The benefit of 

using the side-core approach declines for HTML page sizes between 2KB-16KB, then peaks 

for 32KB page sizes.  For larger page sizes, the benefit continues to decay, although remains 

better than the baseline. 

Dynamic workload . We demonstrate the real strength of having a dynamic environment 

that is able to adapt to change. We test the system with a workload that varies over time. This 

is achieved by running a Netperf TCP stream with a busy-loop test that sends 2KB messages, 

while using changing amounts of busy-loop cycles. The number of busy-loop cycles ranges 

from 0 to 35000, and the number of cycles used for each phase of the test is marked above 

the phase in Figure 7 as the first number in the pair. The test comprises seven phases, each 

running for 30 seconds. The throughput is sampled every two seconds.  
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Figure 7: Dynamic benchmark running of a Netperf TCP stream w. 2KB messages and seven phases of various 

busy-loop configurations  

The results for the dynamic workload experiment are shown in Figure 7, comparing the 

optimum performance achievable in each stage (the static best) vs IOcm. 

IBM MessageSight Application  

IBM MessageSight [20] is the bridge between incoming data from IoT devices and the 

consumers within the enterprise up to the HPC/analytics applications that consume the data. 

The MessageSight bridging is planned to be provided in several deployment models, 

including  as-a-Service, where a tenant receives a dedicated, hosted MessageSight cluster 

running on VMs over the KVM hypervisor. Due to the expected high throughput of IoT 

messages, the incoming I/O performance is the major constraint on the number of 

MessageSight VMs per physical server. Thus, the performance improvement of the incoming 

I/O in sKVM will enable more MessageSight VMs per physical server, and as a result, improve 

the efficiency of the MessageSight service per a given  number of physical servers. 

Test Setup  The experiments were done with one (or in some cases two) servers running 

benchmarking tools, which were connected back-to-back (i.e. no network switch) over a 

10GbE link to a third server which hosted the MessageSight VMs (Figure 8). The experiments 

were conducted with a MqttBench, a proprietary IBM tool used for benchmarking 

MessageSight by simulating a large number of IoT devices sending messages over the mqtt 

protocol.  
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Figure 8: MessageSight test setup 

The MessageSight host was an IBM System x3650 M4, with 2 sockets, 8 cores Intel(R) Xeon(R) 

CPU E5-2680 2.70GHz, HyperThreading enabled, 128G memory, Intel 82599ES 10-Gigabit 

Ethernet network card.  The host ran Linux with a 3.18 kernel, sKVM (with IOcm support and a 

vhost backend) and QEMU version 2.0.0 (Debian 2.0.0+dfsg-2ubuntu1.21).. We ran a series of 

experiments on MessageSight running in VMs over sKVM to simulate the as-a-Service 

deployment model with the IOcm  technology, and compared it to the standard KVM (vanilla). 

These experiments show a significant improvement in the maximum total message 

throughput obtained by a cluster of MessageSight VMs running on a single physical server.  

Evaluation  The experiments were conducted to determine maximum message rates for 

different numbers of connections in various cluster sizes (numbers of MessageSight VMs). 

The results showed an increased message rate enabled by sKVM with the IOcm technology in 

the range of 20-50%. The high throughput is gained through both the number of 

connections (up to 100K) and increased message rate per VM.  

Following are the results and diagrams of experiment set against one MessageSight VM 

consisting of 8 vCPUs, 32GB of memory, and a multiqueue virtio NIC with 8 queues. These 

experiments simulate 100K (separate) TCP connections, sending at a requested message rate 

overall (across these 100K connections). 
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Figure 9: MessageSight experiment set against 1 big VM 

In Figure 9 and Figure 10, the X axis shows the requested message rate in each experiment, 

and the Y axis represents the actual message rate attained by MessageSight processing. The 

blue bars represents the ideal state where the full requested rate is achieved. It can be seen 

that starting at 220K msg/sec the MessageSight running on the vanilla KVM is starting to get 

into trouble, while the IOcm enables a reasonable operation. 

Following is the result diagram of experiment set against 6 MessageSight VMs, each 

consisting of 2 vcpus, 32GB of memory, and a  virtio NIC (with 1 queue). This experiment 

simulated 100K IoT devices, each with its own persistent TCP connection (100K TCP 

connections). 
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Figure 10: MessageSight experiment set against 6 small VMs 

Here the message load is spread across 6 VMs and it is possible to get higher total message 

rates (the reason is due to an application scaling limitation of a single MessageSight 

instance), and it can be seen that in the case of a message rate of total 900K msg/sec, IOcm 

causes an increased actual throughput of up to 40%. 

2.4 IOcm - Conclusions 

In year 2 we analyzed the results of the IOcm development and evaluation, focusing on the 

IO cores policy management. We demonstrated the IOcm advantage both for standard 

benchmarks as Netperf and Apache HTTP server, and for the real life application IBM 

MessageSight. For IBM MessageSight, the results show, as expected,  the importance of IOcm 

for heavy I/O applications with throughput intensive streams of small packets. We conclude 

that despite some impressive results with small packet sizes, we must continue to search 

other directions to improve I/O intensive applications that use larger packet sizes. 



Project No. 645402 

MIKELANGELO Deliverable D3.2 

 

 

Public deliverable 

Ê Copyright Beneficiaries of the MIKELANGELO Project     Page 21 of 48 

Therefore during the latter part of year 2 we started to work on the second vHost technology, 

ZeCoRX, that also aims to further improve the sKVM I/O, as we describe on the next section.      

2.5 Future ð Zero Copy RX (ZeCoRX) 

We are now in the final design phase of the ZeCoRX technology, which aims to eliminate 

copy operations that are performed in the processing of incoming packets that i nvolves the 

NIC, the hypervisor and the guest VM. The hypervisor vhost_net module copies the incoming 

packet content into a shared ring buffer, from where it is copied by the guest to its own 

buffer. With ZeCoRX, the physical NIC will be configured to place incoming packets directly 

on the buffers allocated by the guest, thus eliminating the copying operation normally 

needed from the buffer allocated by the kernel driver to user space. This raises challenges of 

synchronization between the guest buffer allocation system and the vhost module. The 

intention is to support the macvtap interface only (a network interface that can be attached 

to a software device) which will make it easier for upstream contribution, since this approach 

requires less intervention with the existing host networking stack, provides flexibility for 

enabling/disabling ZeCoRX per virtual NIC, and minimizes overhead incurred by the control 

plane. 

Our design is being made with the cooperation of key figures in the Linux kernel community, 

to help smooth the path to contributing the changes back upstream. Based on lessons 

learned in our past research, we have taken a policy to work with the kernel community from 

day-1, in order to gain agreement about our direction, and make any necessary modifications 

to the design before getting too deep into the project.  

  



Project No. 645402 

MIKELANGELO Deliverable D3.2 

 

 

Public deliverable 

Ê Copyright Beneficiaries of the MIKELANGELO Project     Page 22 of 48 

3 vRDMA 

3.1 Overview 

In deliverable 2.13 [1], we proposed three designs for enabling virtualized RDMA (vRDMA). 

Virtualized RDMA is allowing guests to use RDMA hardware in the host to perform more 

efficient communication between different guests - whether the two communicating guests 

are on the same host or on different hosts. Prototype I focused on developing vRDMA 

solutions that support socket based API. This year, we concentrate on the development of 

prototype II, which aims to support guest applications that directly use RDMA verbs. Future 

work of prototype III will focus on combining the two prototypes to support both socket and 

RDMA API with automatic selection of communication protocols, i.e. RDMA for inter-host 

communication or shared memory for intra -host communication, while the guest application 

is unaware of which protocol is being used. 

In vRDMA prototype II, we reuse an existing backend driver on the host, and focus on the 

development o f frontend drivers for OSv that support RDMA over virtualized devices. 

Therefore, the major contribution and efforts were made on the guest side, which is 

presented in deliverable D4.5 [19]. 

In the following sections, we present the architectural design of prototype II backend driver, 

the hardware and software requirements that need to be met, how to build and use it with 

detailed example instructions, and finally a brief evaluation of the updated backend driver. 

3.2 Architecture  

The backend driver of prototype  II manages the I/O requests on the host side which directly 

accesses hardware devices. The proposed backend driver in prototype II modifies and 

extends the existing HyV [22] vhost implementation to the target Linux version 3.18. Hyv 

implements a frontend driver and a kernel vhost backend driver for Linux 3.13. Using the 

backend driver of Hyv directly for vRDMA saves the effort of re-implementing the backend 

driver from scratch, and only the frontend for OSv needs to be developed.  

The difference between prototype II and the HyV implementation on the guest side is that we 

eliminate unnecessary context switches between user and kernel space, porting only the 

required OFED kernel definitions to support the kernel verb structure in the user space 

library. The OFED resources, like context handles and user command data, will never be 

necessarily copied between guest and kernel spaces. Many memcpy operations are avoided 

and making the frontend driver more efficient.  
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On the host side, the major part of prototype II design stays unchanged comparing to the 

initial plan proposed in D2.13. Figure 11 shows the current architecture design (left) 

compared to the one proposed at the begi nning of the project ( right ). The current design 

architecture moves the vhost driver from user space to kernel space, in order to reuse the 

existing backend driver of HyV.  

The original HyV driver uses a communication scenario, called hypercall, between guest and 

host. The control path for the virtio -rdma driver are managed by the hypercall 

implementation, and the verb commands are prepared in a specific and formatted message 

buffer which can be parsed by the frontend and backend driver. Meanwhile, the data path is 

using the directly shared RDMA memory regions, which is the same as the prototype II 

architecture. We follow the same semantic that HyV uses, i.e. hypercall communication 

between guest and host for the control path communication, in order to reuse  HyVõs backend 

driver on the host. For each RDMA verb call, e.g. ibv_query_device [23], the virtio-rdma driver 

will prepare the parameters into a communication buffer and send it to the host driver to 

execute the requested verb call. The host driver then knows the correct kernel verb call to run 

with sufficient parameters. However, as OSv doesnõt have any RDMA support, we still need to 

implement the frontend driver, which has been done and explained in D4.5 [19]. 

 

Figure 11: Architecture of vRDMA prototype II. Left: updated architecture design with vhost moved to kernel 

space. Right: original architecture proposed last year. Control path (black arrows) is managed by the hypercalls. 

Data path (green arrows) is directly mapped and shared between guest and host. 

A QEMU patch is also needed for providing the virtual device support for the guest, which 

has been provided within the Git repository of HyV [22]. The original patch from HyV was 

made for an ancient git version of QEMU. We have updated this patch to support QEMU 2.4.0 
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accordingly. As HyV supports only Linux 3.13, and the target kernel for MIKELANGELO is 3.18, 

it then needs to be updated. Changes have to be made to the QEMU patch for handling the 

memory mapping between the g uest and the newer host kernel and managing the virtual 

device. 

3.3 Usage Requirements 

To use vRDMA prototype II, the following system configuration and hardware requirements 

must be met: 

Ɓ Virtualization is enabled in BIOS. For Intel CPUs, VT-x must be enabled, and for AMD 

CPUs, AMD-v must be enabled, 

Ɓ ConnectX-3 adapter cards with Virtual Protocol Interconnect (VPI) is used. 

Ɓ QEMU 2.4.0 and the patch made for Hyv 

Ɓ Host side needs HyV backend driver 

Ɓ On the host side, install OFED user libraries: libibverbs, libmlx4, librdmacm, opensm. 

libibverbs provides the user linkage to the verbs API. libmlx4 is the user space service 

provider. Librdmacm is the RDMA connection manager. opensm is the system services 

for subnet management. 

Once the above requirements are fulfilled, you are ready to set up the host side for using 

vRDMA following instructions given in Section 3.4. 

3.4 Building and Configuring vRDMA Backend Driver  

On the host side, we utilize the host drivers from HyV design. To install and setup the host 

side for vRDMA, follow the steps below. 

Make sure you are using linux version 3.18. Install kernel source (the following commands are 

based on Ubuntu distribution. For other distributions, please replace the sudo apt-get 

command with the correct system commands): 

$ sudo apt - get  install linux - headers - 3.18 .0  
$ sudo apt - get  update  
$ sudo apt - get  install linux - source  
$ sudo apt - get  source linux - image- 3.18 .0  
$ cd / usr / src / linux - source - 3.18 .0  
$ sudo tar - xf linux - source - 3.18 . 0.tar . bz2 

 

Obtain and build HyV source code into your working directory:  

$ git clone https : //github.com/zrlio/hyv  
$ export  KSRC=/usr/ src / linux - source - 3.18 . 0/ linux - source - 3.18 .0  

 

https://github.com/zrlio/hyv
https://github.com/zrlio/hyv
https://github.com/zrlio/hyv
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Next, install the following packages: 

$ sudo apt - get  install libibverbs1 libibverbs - dev librdmacm1 librdmacm - dev infiniband -
diags ibverbs - utils libmls4 - 1 libmthca1 libipathverbs1  

 

Now download, patch and compile qemu  

$ wget http : //wiki.qemu - project.org/download/qemu - 2.4.0.tar.bz2  
$ tar xvf qemu - 2.4 . 0.tar . bz2 
$ cd qemu - 2.4 .0  
$ path  patch - p1 < ../ hyv/ host / qemu_diff . patch  
$ cp ../ hyv/ include / virtio_hyv_config . h ../ hyv/ include / virtio_rdmacm_config . h 

./ hw/ virtio/  
$ sudo apt - get  install zlib1g zlib1g - dev libglib2 . 0- dev zlib1g - dev gcc automake  
$ git submodule update --  init pixman dtc  
$ ./ configure  
$ make 
$ sudo make install  

 

To prepare the host, replace the following kernel modules by the ones from HyV 

$ sudo rmmod rdma_ucm  
$ su do rmmod ib_ucm  
$ sudo rmmod ib_ipoib  
$ sudo rmmod vhost_rdmacm  
$ sudo rmmod rdma_cm  
$ sudo rmmod ib_cm  
$ sudo rmmod mlx4_ib  
$ sudo rmmod ib_sa  
$ sudo rmmod iw_cm  
$ sudo rmmod ib_umad  
$ sudo rmmod ib_mad  
$ sudo rmmod ib_uverbs  
$ sudo rmmod ib_ipoib  
$ sudo  rmmod vhost_rdmacm 
$ sudo rmmod rdma_cm  
$ sudo rmmod mlx4_ib  
$ sudo rmmod mlx5_ib  
$ sudo rmmod vhost_hyv  
$ sudo rmmod ib_core  
$ sudo modprobe ib_core  
$ sudo modprobe vhost  
$ sudo insmod / path / to / hyv/ host / vhost_hyv / vhost_hyv . ko 
$ sudo modprobe mlx4_ib  
$ sudo modprobe rdma_cm  
$ sudo insmod / path / to / hyv/ host / vhost_rdmacm/ vhost_rdmacm. ko 
$ sudo modprobe ib_uverbs  
$ sudo modprobe ib_umad  

http://wiki.qemu-project.org/download/qemu-2.4.0.tar.bz2
http://wiki.qemu-project.org/download/qemu-2.4.0.tar.bz2
http://wiki.qemu-project.org/download/qemu-2.4.0.tar.bz2
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opensm provides an implementation of an InfiniBand Subnet Manager and Administration 

[21]. To start opensm on one of the hosts, use command: 

$ / etc / init . d/ opensm start  

 

Before starting a virtual machine, obtain the node GUID of the InfiniBand card with command 

ibv_devinfo, which comes with libibverbs. Next, copy this GUID into the config file 

/path/to/ibnode_guid. Add òallow br0ó in the /usr/local/etc/qemu/bridge.conf  file. Please note 

that em1 is the ethernet port name. This name can differ based on your system and network 

card. 

$ ibv_devinfo  
$ sudo brctl addbr br0  
$ sudo brctl addif br0 em1  
$ sudo ifconfig em1 0  
$ sudo dhc lient br0  

 

Use the following commands to start virtual machines. The user can choose any unused mac 

addresses and give them to your virtual machines. 

$ sudo qemu - system - x86_64 - enable - kvm - boot d - drive  file =~/ workspace / vm- images/ Linux -

3.18 - Ubuntu- 14.04 . qcow - m 2048M - cpu Nehalem - smp 2 - name "VM2" - device virtio - hyv-

pci , config_path ="/path/to/ibnode_guid"  - device virtio - rdmacm- pci - netdev bridge , id =hn0 -

device virtio - net - pci , netdev =hn0, id =br0 , mac=52: 54: 00: 12: 34: 56 & 

 
$ sudo qemu - system - x86_64 - enable - kvm - boot d - drive file =~/ workspace / vm- images/ Linux -
3.18 - Ubuntu- 14.04 . qcow - m 2048M - cpu Nehalem - smp 2 - name "VM2" - device virtio - hyv-
pci , config_path ="/path/to/ibnode_guid"  - device virtio - rdmacm- pci - netdev bridge , id =hn0 -
device virtio - net - pci , netdev =hn0, id =br0 , mac=52: 54: 00: 12: 34: 57 & 

 

Finally we have set up the host side. For guest drivers installation, please refer to deliverable 

D4.5. 

3.5 Evaluation 

We present the I/O performance evaluation of vRDMA prototype II. We evaluate bandwidth 

and latency tests on a local testbed. The testbed is using two HP ProDesk 600 with a 4-core 

Intel i7-4790 processor and 16GB of RAM. HyV uses Linux kernel version 3.13. Our project 

aims to support Linux version 3.18. Hence, we test vRDMA prototype II on a host operating 

system with Linux Kernel 3.18. The Linux guest OS is configured with two vCPUs and 2GB of 

memory. 



Project No. 645402 

MIKELANGELO Deliverable D3.2 

 

 

Public deliverable 

Ê Copyright Beneficiaries of the MIKELANGELO Project     Page 27 of 48 

               

Figure 12: Bandwidth tests of vRDMA prototype II on Linux hosts and guests. 

Figure 12 illustrates the measured bandwidth when using ib_write_bw command. Blue bars 

indicate ib_write_bw bandwidth from host to host, while red bars indicate the bandwidth 

from guest to guest. Bandwidth is measured in MB/s for a message size varying from 32 to 

65536 bytes. We consider a system without VM installed a bare metal. Therefore, the 

bandwidth of host to host is considered to be bare metal performance, which are 

demonstrated by the blue bars. Overall, it can be seen from the bandwidth tests that 

prototype II has a performance close to bare metal, which has only 1~3% difference. The 

throughput increases as the message size increases. For a message size larger than 2048 

bytes, the throughput re aches its limit of approximately 5.6 GB/s, which is the physical upper 

limit of the ConnectX-3 card. 

Figure 13 illustrates the measured latency when using ib_write_lat command. Blue bars 

indicate ib_write_lat latency from host to host, while red bars indicate the latency from guest 

to guest. Latencies are measured in microseconds (Ös) for a message size varying from 32 to 

65536 bytes.  

Both ib_write_bw and ib_write_lat are using the user space verbs API provided by libibverbs. 

When running them in OSv guest, the verb calls are processed by the virtio-rdma driver, and 

only the control path is managed by the hypercall implementation, i.e. control commands like 

create CQs and QPs and releasing the unused resources. The data path is not transferred 

through the hypercall or any other virtio drivers, as the RDMA memory regions are directly 

shared between the InfiniBand hardware to the host and also to the guest by virtual to 
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physical address translation in the virtio-rdma driver. As a result, prototype II has bandwidth 

and  latency performance close to bare metal. 

 

 

Figure 13: Latency tests of vRDMA prototype II on Linux hosts and guests. 

3.6 Future 

Next year we will move onto the development of vRDMA prototype III. Prototype III will 

combine the previous two prototypes together, enabling vRDMA through both socket -API 

and infiniband verbs with the mode automatically selected.  

In prototype III, we will provide a conversion of the socket calls from guest application into 

RDMA verbs, and then pass these verbs to the backend driver. Prototype III will allow 

frontend driver to actively poll the completion event, avoiding the event s ending between 

guest and host. Consequently, TX/RX ring buffers are directly translated to Queue Pairs (QPs) 

in the frontend driver, and Work Requests (WRs) and Completion Queues (CQs) are shared 

between the frontend driver and the RDMA device.  

 

 

  



Project No. 645402 

MIKELANGELO Deliverable D3.2 

 

 

Public deliverable 

Ê Copyright Beneficiaries of the MIKELANGELO Project     Page 29 of 48 

4 SCAM 

In this section we provide a detailed update on the status and plans of SCAM (Side-Channel 

Attacks Monitoring and Mitigation); the security module being developed and implemented 

as part of the MIKELANGELO stack, targeted at thwarting cache side-channel attacks (which 

will be briefly explained below, and described in detail in D3.4 [16]). SCAM is designed as a 

software module, and does not require any specific hardware, nor does it assume any 

intrinsic hardware capabilities. SCAM is designed to be part of the hypervisor level, 

specifically KVM, and is an inherent part of the sKVM implementation being developed within 

the MIKELANGELO project. 

We note that a detailed account of SCAM, as well as the attack surface it is targeting to 

secure, was provided in deliverable D2.13[1] and deliverable D3.4[16]. The former described 

the high-level architecture of sKVM in general, and of SCAM in particular. The latter gives a 

detailed account of the implementation of an attacker running in a VM, which is able to 

extracts a private RSA key within a matter of minutes from a co-located VM running on the 

same host. We recall that since RSA keys are typically valid for months or years and are used 

to identify important networking components the implemented attack is attractive to  a wide 

range of malicious actors, such an attack poses a significant security threat in virtualized 

environments, most predominantly in public clouds.  

In the following sections we provide a detailed update on the work done in developing the 

various SCAM components. In section 4.1 we provide a quick review of the attack method, 

which will be useful both as a refresher on the attack itself, as well as highlights several of the 

mechanisms employed by the attacker, which are also used (with some variation) by our 

monitoring and mitigation modules. In section 4.2 we provide an update on the overall SCAM 

architecture, detailing the parts and components implemented thus far, as well as a high-

level view of the future plans that remain to be developed. In section 4.3, we provide the bulk 

details of the modules developed within SCAM. These modules include a monitoring (and 

initial profiling) module, as well as a mitigation module that performs very fine -grained and 

carefully-timed cache accesses so as to introduce noise and thwart the attackerõs attempts at 

recovering the targetõs private RSA key. For both of these modules we provide a detailed 

performance evaluation study highlighting their various properties, and also discuss several 

tradeoffs that must be taken in to account when deploying and using our proposed solutions. 

Finally, in section 4.4 we describe our future plans for the remainder of this project, which 

focus on extending our monitoring and mitigation techniques, integration of our solutions 

into the MIKELANGELO stack, and further performance evaluation. 
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4.1 Review of Attack 

In this section we review a cache side-channel attack, and focus our attention on a prime-

and-probe based attack. For a complete description of the attack we refer the reader to 

deliverable D3.4 [16]. 

The goal of the attack is to extract a private RSA key used by a server co-located on the same 

host as the attacker. Since the attacker and the server each run on their own VM, any leakage 

of information from the target useful to the attacker  is done via shared hardware resources, 

predominantly, the last-level cache (LLC). 

The goal of the attacker is to follow closely the decryption process performed by the target 

using its private key, and differentiate between its behavior when a specific bit in the key is 0, 

and when this bit is 1. The standard implementation of the decryption process contains a 

conditional, which in pseudo-code looks as follows: 

for every private key bit b, in sequence, do  

 multiply operation  

 if b == 1  

  another multiply o peration  

 endif  

endfor  

In such an implementation the multiply operation uses the same instructions, but is executed 

an additional time for any 1 -bit in the private key. Assume an attacker invalidates all the lines 

storing the targetõs data in a cache set storing (some of) the instructions required for 

performing the multiply operation before each such operation commences. In this case, each 

such operation causes a cache-miss causing the server to store its own cache lines instead of 

some of the attackerõs lines. 

By measuring its own hit-miss ratio for each such invalidation of a cache set, the attacker can 

discern between the case where a multiply operation took place or not. It can therefore 

identify whether or not the condition evaluated to a true value (i .e., the current bit of the 

private key is 1), or not. Using sufficiently many samples, and further optimization (addressing 

issues of synchronization, pattern recognition, alignment, voting etc.), the attacker can hence 

recover the key. 

To better understand our monitoring and mitigation approaches, it is important to consider 

with some care the exact operations performed by an attacker in such scenarios. The above 

attack technique, commonly referred to as prime-and-probe, consists of the following two 
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basic operations performed consecutively by the attacker for each cache set potentially used 

by the target: 

Ɓ Prime: 

accessing all lines of a cache set so as to invalidate all lines that were previously 

potentially used by the target process/VM.  

Ɓ Probe: 

after allowing sufficient time for the target process/VM to access any of the lines in 

the cache set, repeat the access to some of the lines and test for cache misses. 

If the probe operation indicates cache misses, the attacker infers that the cache set in 

question has been accessed by another process, presumably the target. If, on the other hand, 

the probe operation indicates no cache misses, the attacker infers that the cache set in 

question has not been used by any process. 

We again refer the reader to deliverable D3.4 for a more complete description of the attack. 

4.2 SCAM Architecture 

For completeness, we provide here the high-level architecture of SCAM, as described and 

discussed in deliverable D2.13. We note that in the current interim implementation not all 

functionalities are implemented as described in the figure (e.g. we currently have no kernel 

module, and implementation is all in user-space). 

 

Figure 14: SCAM Architecture 
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The current modules implemented within the architecture inc lude the monitoring module, 

along with initial profiling, as well as the initial implementation of the mitigation tools which 

focuses on a specific noisification module. The entire implementation is currently in user-

space. The modules implemented so far interact with the various system counters (for 

monitoring), and timers (for noisification). Furthermore, the noisification module accesses 

cache lines implicitly by explicitly accessing specific virtual memory locations. 

As we elaborate in section 4.4, our future plans for extending SCAM include implementing 

some of the functionality in kernel -space (for both improved performance, as well as better 

control of resources), and more specifically we plan to further develop and validate our 

proposed monitoring an d mitigation approaches (and potentially explore the effectiveness of 

additional techniques). 

4.3 Monitoring and Mitigation Modules  

In this section we describe the design and implementation of the two security modules 

contributing to SCAM. In section 4.3.1 we describe the Monitoring module, and provide an 

evaluation study of its performance. In section 4.3.2 we provide a complete rundown of our 

proposed mitigation technique, the noisification module, along with a performance 

evaluation of its effectiveness and tradeoffs involved in its operation.  

4.3.1 Monitoring  

A method for monitoring VM cache activity to identify cache attacks should ideally be 

lightweight and as accurate as possible. We propose and implement two methods for such 

monitoring. The first relies on reading the PMU (Performance Measuring Unit) which includes 

CPU counters that collect statistics on cache activity. It is lightweight and as our experiments 

prove, can identify most attack strategies with very high accuracy. The second method relies 

on running the prime-and-probe algorithm to detect attacks given the cache sets which the 

attacker monitors. This second method, while extremely accurate, should only be used as an 

addition to the first, since its performance toll is unacceptable in most scenarios. 

Other monitoring strategies are possible but have significant drawbacks. They include static 

analysis of VM code, searching for code patterns that are likely for prime-and-probe attacks 

and full emulation of the VM, dynamically inspecting each instruction  it executes, looking for 

the same patterns. The first option may be defeated by code obfuscation and may not be 

applicable in some settings due to regulation and privacy concerns. The second option 

implies a severe downgrade in performance, but its potential accuracy may make it attractive 

as a complement to other methods. 
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Any strategy for identifying prime -and-probe cache attacks must rely on the low-level 

characteristics of the attack. The attacker repeatedly fills a cache set with its data, which 

requires cache accesses and incurs cache misses if the target works in parallel to it. That is, 

the cache activity of the attacker and the target are correlated, with cache misses for both 

processes increasing when they repeatedly use the same cache sets. 

The current version of SCAM uses the PMU extensively to identify attacks and has the option 

to use prime-and-probe to complement PMU measurements. SCAM monitoring integrates 

the PAPI interface to run the PMU. 

4.3.1.1 Performance Monitoring Unit  

Modern processors by Intel, ARM, IBM and others are equipped with a Performance 

Monitoring Unit (PMU), which provides the user with data and statistics on the performance 

of various CPU components. The user (in our case the hypervisor) selects a list of hardware 

events to monitor such as memory events (LLC cache misses, LLC cache accesses, etc.) and 

CPU events (branch mispredictions, branch predictions, etc.). The PMU controls a set of 

special purpose registers called hardware performance counters (HPCs) which count the 

events. The PMU is typically used for performance profiling, but in our case can be 

repurposed for monitoring. There are two common ways to read PMU data, either through 

perf or by using the PAPI interface. 

Perf -  The user can configure the PMU and read the HPCs state either by using the  

perf_event_open system call or a command line application called perf and perf-stat. The 

HPCs may be configured to count the events generated by a specific thread. The maximum 

effective sampling frequency of the perf_event_open is a sample every several microseconds, 

but the perf application is limited to sampling at most once every 100 milliseconds.  

Performance Application Programming Interface (PAPI)  is an open source library [17] 

which supports a wide range of processors and offers two levels of platform-independent 

interface for monitoring events and a high level management interface. PAPIõs maximum 

sampling frequency is in order of a few microseconds (depending on system workload and 

OS scheduling). 

4.3.1.2 Standalone Measurements 

We first show measurements of the target server running without interference from the 

attacker and the attacker running independently with the server inactive. In both cases SCAM 

code was executed on a different core. 

The target is a web server configured with a 4096-bit RSA key. A client repeatedly connects to 

it using the TLS handshake protocol, which is the way to create secure HTTP (i.e. https) 
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connections. In Figure 15 the horizontal axis counts the number of probes that SCAM 

monitoring makes of the PMU t hrough PAPI. A typical window of 8000 probes is presented 

out of a million probes that were performed as part of the experiment. The vertical axis 

counts the number of cache accesses and cache misses between two successive probes of 

the PMU. The sampling frequency of the PMU is one sample per 100 Ȋseconds, which is 

sufficient for our purposes. The blue lines represent the number of Total Cache Accesses 

(TCA) while the red lines represent Total Cache Misses (TCM). 

Note the periodic behavior of the server, which is caused by repeated connections from the 

client with no other activity. A single connection requires about 69 milliseconds, out of which 

computing the signature, using the RSA private key requires 65 milliseconds. 

 

Figure 15: Standalone web server cache accesses and misses. 

The next figure presents similar cache activity for the attack we developed as a way to test 

SCAM. The attackerõs rate of accesses is relatively high (this is a side-effect of our attempt to 

make the attack fast rather than stealthy) while the rate of misses is relatively low. The low 

miss rate is expected when the server is not active since the attacker fills cache sets with its 

data, but that data is typically still in the cache when the attacker reads it back. Note that the 
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accesses and misses of the attacker do not resemble the pattern that was measured for the 

web server. 

 

Figure 16: Measurements of standalone attackerõs cache accesses and misses. 

4.3.1.3 Correlated Measurements  

When both the server and an attacker work concurrently the ratio of misses to accesses 

increases as both processes access the same cache sets. Furthermore, the attacker fills the 

cache sets with its own data, causing cache misses for the server, while each access by the 

server causes a cache miss for the attacker. The following diagram shows attacker and server 

cache activity when working concurrently with each other. 

 



Project No. 645402 

MIKELANGELO Deliverable D3.2 

 

 

Public deliverable 

Ê Copyright Beneficiaries of the MIKELANGELO Project     Page 36 of 48 

 

Figure 17: Attacker cache activity while working concurrently with server. 

Figure 17 clearly shows that the number of accesses by an attacker is largely unchanged 

when working in standalone mode or concurrently with the server. However, the miss ratio is 

much higher and is exactly correlated with server activity1. Note that the number of misses in 

Figure 17 is increased compared with the measurement of standalone server activity in Figure 

15. 

4.3.1.4 Identification  

The monitoring module assigns a score to each VM that determines how closely its activity 

resembles a cache attack, or in other words how suspicious it is. The critical data for each VM 

is its miss ratio, i.e. the ratio between the number of cache misses and cache accesses in a 

time interval. The monitoring module stores a low miss ratio and a high miss ratio for each 

VM. The two ratios are computed by computing the miss ratio for each PMU probe, taking 

the average of the higher half of the measurements as the high miss ratio and the lower half 

                                                 
1
 The number of misses is synchronized with the RSA private operations that the server 

performs. 
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as the low miss ratio. Outliers are removed before computing both ratios. The two ratios are 

updated dynamically throughout the operation of a VM.  

For each time interval of 100 milliseconds the monitoring tests if th e miss ratio of a VM was 

close to the low miss ratio for at least 4 milliseconds and then close to the high miss ratio for 

at least 15 milliseconds. The values represent measurements for a TLS handshake in which 

the high values occur when the server computes RSA signatures (which takes ~65 

milliseconds in the setup we use and could be four times faster using shorter keys) and the 

low values occur during the rest of the handshake. If both conditions are met then the VMõs 

score is increased by 1. After a threshold is reached (currently set to 10) in a predetermined 

time interval T, the VM is considered to be a likely cache attacker. If not, then the counter is 

reset. Determining T While the current monitoring algorithm is successful in identifying the 

current attack, we intend to look into likely extensions and improvements in year 3. Some of 

the natural extensions include testing it on different hardware, using different workloads with 

possibly other RSA implementations and craftier attackers.   

4.3.1.5 Performance  

To check the impact of monitoring on system performance we measured the effect of 

different rates of monitoring on the server. The average setup time for a HTTPS connection 

between a web client and the server is summarized in Figure 18. 

Probing the PMU at 100 Ȋseconds incurs less than 1% overhead and is sufficient for 

successfully identifying the attacker, which is why we intend to use that rate in the future. 

Probing at higher rates induces reduced performance as shown in Figure 18 and does not 

significantly add to detection rates. Additional tests on the average number of cycles and 

instructions in the server present a similar picture of little difference in server performance 

between no monitoring at all and probing the PMU every 100 Ȋseconds. 
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Figure 18: Server connection time for different probe rates of the PMU 

4.3.2 Mitigation by Noisification  

In the current section we describe a method for mitigating cache side-channel attacks in 

virtualized environment. Our method is based on a process which introduces noise into a 

potential attacker's attempt to discern cache activity of a co-located target. We refer to our 

proposed mitigation approach as "noisification", and refer to the module implementing this 

approach as the noisification module (NM). 

We first provide a complete description of our method, then turn to  present our performance 

analysis, and finally conclude with a discussion of the limitations and further extensions of 

our approach. 

4.3.2.1 Overview 

Our implementation of the noisification module is implemented as a user -space process 

running on the host.  

The goal of the NM is to cause cache misses in the attacker's cache accesses, so as to 

significantly reduce, and ideally obliterate, its ability to extract bits of the private key used by 

the target server. 

In a nutshell, the ideal mitigation method would cause * all* access made by the attacker to 

induce a cache miss. In such a case the attacker cannot infer any information from following 

hit-miss patterns in its cache access activity. The toll of implementing such an approach on 

the hypervisor-level would be a severe degradation in performance, and might require 

unreasonable resource to implement (e.g., multiple cores dedicated solely to noisification). 
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However, as we show, even if some of the access made by the attacker is deflected, it is 

sufficient to reduce th e rate of the attack, and at times even eliminate it completely. 

The order in which processes and VMs are initiated on the host machine is as follows: 

Ɓ NM 

Ɓ Target VM (server + client) 

Ɓ Attacker VM 

This specific order allows the NM to perform its first reconna issance phase on a bare system, 

thus learning the baseline performance of the system. Following this initial phase, once the 

target VM is initiated, the NM is able to perform its second reconnaissance phase, of 

identifying the caches sets used by the target, which will be the focal point of the NM once 

the attacker is initiated. 

4.3.2.2 Detailed Description  

We now turn to describe the various tasks performed by the noisification module, and its 

possible modes. 

Reconnaissance 

Ɓ Building the memory -cache mapping: 

Upon executing on a bare system, the NM begins by building a mapping of its 

memory space to cache sets so as to be able to fill all lines in each cache set. The 

procedure for performing this task is the same as the one employed by the attacker 

when building its  mapping of memory to cache sets, described in detail in deliverable 

D3.4 [16]. This procedure results in a mapping 

ű: NM-memory -> LLC-sets 

such that each LLC-set S has at least w memory locations mapped to S, where w is the 

set-associativity of the LLC in the system. In formal terms, this can be described by 

having 

|ű-1(S)|  w. 

We further assume some arbitrary order on ű-1(S), for every LLC-set S. This order 

allows us to consistently access some k lines of each set, for any k, and in particular, 

allows us to implicitly access the i'th line corresponding to some set S, in a consistent 

manner. 

Ɓ Profiling the baseline cache activity: 
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Once the memory-cache mapping is available, the NM performs a prime-and-probe 

procedure for identifying the baseline cache activity of the system, and gathering 

activity statistics for each cache set. 

This phase results in a table modeling the cache-access profile of a bare system with 

no additional co -located VMs (neither target nor attacker). 

Ɓ Identifying target cache sets: 

After the target VM server is running, and a client constantly accesses the server 

(which causes the server to start performing its decryption procedure repeatedly), the 

NM performs a prime -and-probe procedure for identifyi ng the active sets used by the 

target server. This mimics the procedure employed by the attacker when identifying 

the relevant target cache sets, as described in deliverable D3.4 [16]. 

In particular, this procedure results in a table modeling the cache-access profile of the 

system with an active target VM on top of a bare system. Cache sets which show a 

distinct activity profile compared to the baseline cache profile, are considered as the 

active sets used by the target. We denote the collection of sets thus identified by M. 

Noisification  

After having identified the collection M of sets which are potentially used by the target server, 

and given the ordering of the cache lines of each set, the NM is activated by the following 

procedure, taking two parameters, M and k, where intensity parameter k determines the 

number of lines accessed by the module in each noisified set.: 

ActivateNoisification( M, k)  

 for each cache set S in M 

  for i  = 1 to k  

   access line i  of S 

  endfor  

 Endfor  

 

4.3.2.3 Evaluation 

We have performed multiple simulations of testing the performance of our noisification 

module, NM, with the attacker module developed within the project, as described in detail in 

deliverable D3.4. This section provides the results of our evaluation study. 

We first discuss some tradeoffs in the parameters of the NM. Recall that NM identifies a 

collection M of cache sets that are potentially used by the target, and which are expected to 
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be the cache sets primed and probed by the attacker. Since NM does not know which of 

these cache sets will actually be accessed by the attacker, nor when the attacker will be 

accessing them, it is required for the noisification module to introduce noise that affects all of 

these cache sets. The ability of NM to introduce noise into a collection of cache sets depends 

on several parameters, namely: 

1. Parallelism level of NM, i.e., the number of available cores for NM 

2. The number of cache sets to protect, i.e., |M| 

3. The intensity, or amount of noise, introduced to each protected cache-set, modeled 

by parameter k. 

Ideally, we would like to have |M| as small as possible, and k as large as possible, to ensure 

the highest level of protection. However, the size of M is determined by the measurements 

performed by NM, and cannot be controlled directly by NM. It follows that the main 

parameter which is under the control of NM, with which it can fine -tune the application of 

noisification to the protected cache sets, is k, i.e., the number of cache lines accessed in each 

protected cache set. Clearly this parameter should take values between 1 and w, where w is 

the set-associativity of the LLC in the system. We note that the higher the value of k, the 

more resource consuming it is for NM to protect a single cache set, which in turn implies a 

lower rate in which it can traverse the entire collection of cache sets in M. This introduces an 

inherent tradeoff between the breadth of the protection (i.e., the rate in which all sets in M 

can be noisified), and the completeness of the protection (i.e., the amount of nois e introduced 

into each protected cache set). 

We note that in our evaluation all tests allowed a single core to be used by NM, hence, no 

parallelism was employed. This allows to better understand the baseline security performance 

of NM. As one can expect, allowing NM to use multiple cores can increase the breadth of 

protection provided by NM.  

We now turn to recall some of the parameters used in the implementation of our attack (a 

complete description is provided in deliverable D3.4). The attacker builds its own memory-to-

LLC-sets mapping, and then tests all cache sets, assuming the target is constantly performing 

decryption using its private key, for some known patterns that represent the conditional 

statement which the attacker is trying to identify, as described in section 4.1 above. The 

attacker then identifies the top -5 sets for which the patterns were best. For each of the sets, 

the attacker attempts to gather 200 samples of (potentially) complete decryptions, each 

using the entire key. It then performs alignment, and takes majority voting for deciding the 

value of each bit in the private key. 
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We have tested multiple attempts of the attacker to recover the key, with and without NM 

working. Our system has a 8192 cache sets in the LLC, organized as a 12-way associative 

cache. In all of our experiments the NM was able to map all 8192 cache sets. 

We have allowed the attacker to recover the key for 500 attempts: 20 tests, where in each test 

the attacker attempts to recover the key 5 times from each of its top 5 cache sets. NM 

worked with intensity parameters k = 1, 2, 5. Table 1 gives a summary of the performance of 

NM in the above settings. For each value of k, the table shows the statistics of the size of M 

(min, max, average, standard deviation), the number of sets mapped by the attacker (min, 

max, average, standard deviation), the number of attempts in which the attacker was able to 

extract more than 2 samples (number of such attempts, and the average and standard 

deviation of the number of samples in those attempts), and the number of successful 

attempts. 

Table 1: Noisification evaluation results 

 # sets to 

protect by 

NM 

#sets 

mapped by 

attacker 

#attempts with 

>2 samples 

+ statistics  

#successful 

attempts 

Without NM  - 8182-8190 

 

AVG: 8184 

STD: 10 

85 

 

AVG: 149 

STD: 74 

62 

With NM, k=1  190-358 

 

AVG: 227 

STD: 40 

8127-8178 

 

AVG: 8159 

STD: 15 

17 

 

AVG: 5 

STD: 2 

0 

With NM, k=2  217-299 

 

AVG: 258 

STD: 24 

8087-8187 

 

AVG: 8167 

STD: 20 

22 

 

AVG: 20 

STD: 24 

0 

With NM, k=5  194-259 

 

AVG: 234 

STD: 19 

8156-8187 

 

AVG: 8180 

STD: 8 

27 

 

AVG: 27 

STD: 46 

0 

 

As can be seen by our results, activating NM results in a drastic decrease in the number of 

samples extracted by the attacker. Furthermore, the table shows that decreasing the intensity 

of protecting each cache set does not affect the number of successful attempts. However, 
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increasing the intensity implies a lower rate of traversing the entire collection of protected 

cache sets, which results in the attackerõs ability to obtain more useful samples (although 

insufficiently many to actually recover the private key). 

It is important to note that the above results are valid for our specific implementation of the 

attacker. Alternate implementations may result in different performance. However, the overall 

insight obtained by our evaluation study is that:  

(1) Noisification is an effective method in reducing, and potentially eliminating, the 

effectiveness of cache side-channel attacks 

(2) There is an inherent tradeoff between the number of cache sets to be protected 

(breadth, as captured by the size of M) and the ability to provide full protection to 

these sets (completeness, as captured by parameter k). 

(3) The exact level of security can be fine tuned using the intensity parameter k. 

(4) Potentially, alternate implementations of the attack might necessitate using 

higher/lo wer value of k. 

4.3.3 Future 

The current modules designed and implemented as part of SCAM provide the initial design 

of our proposed monitoring and mitigation solutions. In further developing SCAM, we plan to 

address the following topics and issues: 

(1) SCAM as a security suite 

We plan to provide a unified framework for both monitoring and mitigation that is 

able to support several modes. One mode is the proactive mode, in which the 

mitigation tools are made active at boot time, regardless of any activity discerned by 

the monitoring module. Another mode we plan to support is reactive mode, where 

mitigation is triggered by the monitoring module as soon as suspicious acti vity is 

identified. These two modes apply to both the noisification module, and/or to any 

additional mitigation techniques to be developed within the framework of SCAM.  

(2) Improved implementation  

We plan to implement parts of the modules developed so far, as well as future 

modules, as kernel processes, for improved performance, and better fine tuning of 

parameters. For example, in the context of noisifcation module, we expect such an 

implementation to increase the completeness of the protection provided to cac he 

sets (i.e., enabling increasing k without the current toll of the increased number of 

samples collected by the attacker). This will also serve to verify the adequacy of our 

approach against other potential implementations of the attacker. We recall that  

enabling our mitigation module to access all cache lines in a set, consistently, at high-
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rates, will cause the attacker to encounter nothing but cache misses in his attempts to 

prime-and-probe the LLC. We expect that a kernel-side implementation of some o f 

the components may enable coming close to this ideal. 

(3) Fine grained monitoring  

We plan to improve our monitoring module by both considering offline approaches 

for anomaly detection within the monitoring module, in order to provide improved 

security, as well as by considering alternative implementations of the attacker. This is 

expected to be especially crucial for the application of our mitigation techniques in 

reactive mode. 

(4) Improved mitigation  

We intend to improve our mitigation abilities, by developing stronger noisification 

mechanisms, which are able to thwart alternate implementations of the attack. 

Alongside the noisification approach described in the previous sections, we hope to 

explore the effectiveness, potentially in tandem, of additional mitigat ion techniques, 

such as page-remapping, which will perform virtual -to-physical page remapping at 

run time, thus altering the potential target cache sets.  

(5) Integration of SCAM within the MIKELANGELO stack 

We will integrate SCAM as an integral part of the MIKELANGELO stack. In particular, 

we plan to provide a clear API for managing the various parameters in the various 

modules which are part of SCAM. We will further integrate SCAM, along with the 

various metrics that affect its performance, within the Snap monitoring overviewing 

the MIKELANGELO stack as a whole. 

(6) Testing and evaluation 

We plan to test and evaluate the entire SCAM suite on the testbed used by the 

MIKELANGELO project, in order to better understand the performance toll imposed 

by our modules, alongside real-life workloads and scenarios. 
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5 Concluding Remarks 

sKVM has now reached a level of maturity which contains a working implementation of each 

of the components; IOcm, vRDMA and SCAM. Each component has been tested individually, 

and shown to work on the various use cases according to the design of the components. We 

have shown the progress made during the past year, bringing the basic working prototypes 

that were available at the end of year 1 into fully functional features, including in -depth 

evaluation. In the coming year, sKVM will continue to mature and develop in regard to 

performance to integrate these features together, and become truly usable.  
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